Quantum trajectories: invariant measure uniqueness and mixing

arXiv:1703.10773

with M. Fraas, Y. Pautrat and C. Pellegrini

Tristan Benoist

Venice, August 2017

IMT, Université Paul Sabatier

A canonical experiment (S. Haroche's group)

- j 1101111111110011101101111
- i ddcbccabcdaadaabadddbadbc
- j 0101001101010101101011111
- i dababbaacbccdadccdcbaaacc

- j 0001000110110000001010110
- i ddcaddabbccdccbcdaabbccab
- j 0001010100000100011101101
- i bcdaddaabbbbbdbdcdccadaada

Images: LKB ENS

State space

Definition (Quantum states)

Density matrices:

$$\mathcal{D}:=\{\rho\in M_d(\mathbb{C})\mid \rho\geq 0, \text{tr}\, \rho=1\}.$$

Definition (Pure states)

Pure states are the extreme points of $\mathcal{D}.$ Namely, $\rho \in \mathcal{D}$ is a pure state iff.

$$\exists x \in \mathbb{C}^d \setminus \{0\} \ s.t.$$

$$\rho = P_x := |x\rangle\langle x|.$$

Definition (Metric)

Unitary invariant norm distance:

$$d(\rho, \sigma) = \|\rho - \sigma\|.$$

Remark

For
$$U \in U(d)$$
, $d(U\rho U^*, U\sigma U^*) = d(\rho, \sigma)$.

System evolution without conditioning on measurements

Definition (Completely positive trace preserving (CPTP) maps)

Without conditioning on measurement results the system evolution is given by a CPTP map:

$$\Phi: \mathcal{D} \to \mathcal{D}$$

$$\rho \mapsto \sum_{j=1}^{\ell} V_j \rho V_j^*$$

with Kraus operators $V_j \in M_d(\mathbb{C})$ for all $j = 1, ..., \ell$ s.t. $\sum_{j=1}^{\ell} V_j^* V_j = \operatorname{Id}_d$.

Remark

Seeing Φ as arising from the interaction of the system with an auxiliary system (probe), Kraus operators $V_j = \langle e_i | U\Psi \rangle := \sum_{i=1}^\ell U_{ij} \langle e_j | \Psi \rangle$ with:

- The initial state of the probe $|\Psi\rangle\langle\Psi|$
- The system-probe interaction U
- ullet The observable measured on the probe $J:=\sum_{j=1}^\ell j|e_j
 angle\langle e_j|$

Different observables on the probe give different V_i but same Φ .

$$\Phi(\rho) := \mathsf{tr}_{\textit{probe}}(U\rho \otimes P_{\Psi}U^*) = \sum_{j=1}^{\ell} \langle e_j | U\Psi \rangle \rho \langle \Psi | U^* e_j \rangle.$$

Indirect measurement

Initial state: $\rho \in \mathcal{D}$

ullet Evolution unconditioned on the measurement: $ho \mapsto \Phi(
ho)$.

Indirect measurement

Initial state: $\rho \in \mathcal{D}$

- Evolution unconditioned on the measurement: $\rho \mapsto \Phi(\rho)$.
- Conditioning on the measurement of *J*:

$$\rho \mapsto \rho' = \frac{V_j \rho V_j^*}{\operatorname{tr}(V_j^* V_j \rho)}, \quad \text{with prob. } \operatorname{tr}(V_j^* V_j \rho)$$

Indirect measurement

Initial state: $\rho \in \mathcal{D}$

- Evolution unconditioned on the measurement: $\rho \mapsto \Phi(\rho)$.
- Conditioning on the measurement of *J*:

$$\rho \mapsto \rho' = \frac{V_j \rho V_j^*}{\operatorname{tr}(V_j^* V_j \rho)}, \quad \text{with prob. } \operatorname{tr}(V_j^* V_j \rho)$$

Remark that:

$$\mathbb{E}(\rho'|\rho) = \Phi(\rho).$$

Repeated interactions

• Without conditioning on the measurement, after *n* interactions: $\bar{\rho}_n = \Phi^{\circ n}(\rho)$.

Repeated interactions

- Without conditioning on the measurement, after n interactions: $\bar{\rho}_n = \Phi^{\circ n}(\rho)$.
- Given the state after n-1 measurements of J is ρ_{n-1} , after n measurements of J:

$$\rho_n := \frac{V_j \rho_{n-1} V_j^*}{\operatorname{tr}(V_i^* V_j \rho_{n-1})}, \quad \text{with prob. } \operatorname{tr}(V_j^* V_j \rho_{n-1}).$$

Equivalently, given $\rho_0=\rho$, after n measurements of J producing result sequence j_1,\dots,j_n :

$$\rho_n := \frac{V_{j_n} \dots V_{j_1} \rho V_{j_1}^* \dots V_{j_n}^*}{\operatorname{tr}(V_{j_1}^* \dots V_{j_n}^* V_{j_n} \dots V_{j_1} \rho)}, \quad \text{with prob. } \operatorname{tr}(V_{j_1}^* \dots V_{j_n}^* V_{j_n} \dots V_{j_1} \rho).$$

Quantum trajectories as Markov chains

Definition (Quantum trajectory)

Given a finite set of $d \times d$ matrices $\{V_j\}_{j=1}^\ell$ s.t. $\sum_{j=1}^\ell V_j^* V_j = \operatorname{Id}_d$, a quantum trajectory is a realization of the Markov chain of kernel:

$$\Pi(\rho,A) := \sum_{j=1}^{\ell} \mathbf{1}_A \left(\frac{V_j \rho V_j^*}{\operatorname{tr}(V_j^* V_j \rho)} \right) \operatorname{tr}(V_j^* V_j \rho)$$

for any $A \subset \mathcal{D}$ mesurable.

Preliminary results: Perron-Frobenius Theorem for CPTP maps

Definition (Irreducibility)

The CPTP map Φ is said irreducible if the only non null orthogonal projector P such that $\Phi(PM_d(\mathbb{C})P) \subset PM_d(\mathbb{C})P$ is $P = \operatorname{Id}_d$.

Theorem (Evans, Høegh-Krohn '78)

A CPTP map $\Phi: M_d(\mathbb{C}) \to M_d(\mathbb{C})$ is irreducible iff. $\exists ! \rho_{inv.} \in \mathcal{D}$ s.t. $\rho_{inv.} > 0$ and $\Phi(\rho_{inv.}) = \rho_{inv.}$.

Moreover, if Φ is irreducible, its modulus 1 eigenvalues are simple and form a finite sub group of U(1). The sub group size $m \in \{1, \ldots, d\}$ is equal to the period of Φ and $\exists \ 0 < \lambda < 1 \ and \ C > 0 \ s.t. \ \forall \rho \in \mathcal{D}$,

$$\left\|\frac{1}{m}\sum_{r=0}^{m-1}\Phi^{\circ(mn+r)}(\rho)-\rho_{inv.}\right\|\leq C\lambda^n.$$

Preliminary results: Strong law of large numbers for the state

Theorem (Kümmerer, Maassen '04)

Let $(\rho_n)_n$ be a quantum trajectory. Then,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n\rho_k=\rho_\infty\quad a.s.$$

with $\Phi(\rho_{\infty}) = \rho_{\infty}$. Particularly, if Φ is irreducible, $\rho_{\infty} = \rho_{inv.}$ a.s.

Preliminary results: Purification

For any $\rho \in \mathcal{D}$ let $S(\rho) := -\operatorname{tr}(\rho \log \rho)$ be its von Neumann entropy. Then:

$$S(\rho) = 0 \iff \operatorname{rank}(\rho) = 1 \iff \rho \text{ is a pure state.}$$

Theorem (Kümmerer, Maassen '06)

The following statements are equivalent:

- 1. An orthogonal projector π s.t. $\pi V_{j_1}^* \cdots V_{j_p}^* V_{j_p} \cdots V_{j_1} \pi \propto \pi$ for all $j_1, \ldots, j_p \in \{1, \ldots, \ell\}$ is of rank 1,
- 2. For any $\rho_0 \in \mathcal{D}$,

$$\lim_{n\to\infty} S(\rho_n) = 0 \quad a.s.$$

Remark

• If π is s.t. $\pi V_{j_1}^* \cdots V_{j_p}^* V_{j_p} \cdots V_{j_1} \pi \propto \pi$ for all $j_1, \ldots, j_p \in \{1, \ldots, \ell\}$, there exists unitary matrices $U_{j_1, \ldots, j_p}^{\pi}$ s.t.

$$V_{j_p}\cdots V_{j_1}\pi\propto U^{\pi}_{j_1,\ldots,j_p}\pi.$$

• In dimension d=2, either $\lim_{n\to\infty} S(\rho_n)=0$ a.s., or all the matrices V_j are proportional to unitary matrices.

Uniqueness and convergence towards the invariant measure

Theorem (B., Fraas, Pautrat, Pellegrini '17)

If the following two assumptions are verified,

 $(\Phi$ -erg.) Φ is irreducible,

(Pur.) Any orthogonal projector
$$\pi$$
 s.t. $\pi V_{j_1}^* \cdots V_{j_p}^* V_{j_p} \cdots V_{j_1} \pi \propto \pi$ for all $j_1, \ldots, j_p \in \{1, \ldots, \ell\}$ is of rank 1,

 Π accepts a unique invariant probability measure ν_{inv} .

Moreover, $\exists~0<\lambda<1$ and C>0 s.t. for any probability measure ν over \mathcal{D} ,

$$W_1\left(\frac{1}{m}\sum_{r=0}^{m-1}\nu\Pi^{mn+r},\nu_{inv.}\right)\leq C\lambda^n$$

with $m \in \{1, ..., d\}$ the period of Φ .

Previous similar results

 Products of i.i.d. (Furstenberg, Guivarc'h, Kesten, Le Page, Raugi ... '60-'80, Books: Bougerol et Lacroix '85, Carmona et Lacroix '90) Markov kernel:

$$\Pi_0(\rho, A) = \sum_{j=1}^{\ell} \mathbf{1}_A \left(\frac{V_j \rho V_j^*}{\operatorname{tr}(V_j^* V_j \rho)} \right) p_j$$

with $(p_j)_{j=1}^{\ell}$ a probability measure over $\{1,\ldots,\ell\}$.

• Generalization (Guivarc'h, Le Page '01-'16) Markov kernel:

$$\Pi_s(\rho, A) = \mathcal{N}(s)^{-1} \sum_{j=1}^{\ell} \mathbf{1}_A \left(\frac{V_j \rho V_j^*}{\operatorname{tr}(V_j^* V_j \rho)} \right) \left(\operatorname{tr}(V_j^* V_j \rho) \right)^s \rho_j$$

for $s \ge 0$ (Q. Traj.: s = 1).

No assumption that $\sum_j V_j^* V_j = \operatorname{Id}_d$ but the matrices V_j need be invertible and a stronger irreducibility condition is assumed.

- $\{V_j\}_{j=1}^{\ell}$ is strongly irreducible(*i.e.* no non trivial finite union of proper subspaces is preserved by the matrices V_i . Then, strong irreducibility \Longrightarrow $(\Phi$ -erg.)),
- The smallest closed sub semigroup of $GL_d(\mathbb{C})$ containing $\{V_j\}_{j=1}^\ell$ is contracting (equivalent to (**Pur.**) for a strongly irreducible family of invertible matrices).

• Let $p \in]0,1[$ and

$$V_1 = \begin{pmatrix} 0 & \sqrt{p} \\ 0 & 0 \end{pmatrix}, \quad V_2 = \begin{pmatrix} 0 & 0 \\ \sqrt{1-p} & 0 \end{pmatrix}, \quad V_3 = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & 0 \end{pmatrix}, \quad V_4 = \begin{pmatrix} 0 & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}.$$

The family $\{V_1, V_2, V_3, V_4\}$ verifies conditions (Φ -erg.) and (Pur.).

Let,

$$Z = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad X = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

The family $\{Z, X\}$ verifies (Φ -erg.) but not (Pur.). There exists uncountably many mutually singular Π -invariant probability measures concentrated on the pure states.

• Let.

$$Z = \frac{1}{\sqrt{2}} \begin{pmatrix} e^i & 0 \\ 0 & e^{-i} \end{pmatrix} \quad \text{and} \quad X = \frac{1}{\sqrt{2}} \begin{pmatrix} \cos 1 & i \sin 1 \\ i \sin 1 & \cos 1 \end{pmatrix}.$$

The family $\{Z, X\}$ verifies (Φ -erg.) but not (Pur.). Nevertheless Π accepts a unique invariant probability measure concentrated on pure states.

Let, $e_0 = (1,0)^\mathsf{T}$, $e_1 = (0,1)^\mathsf{T}$ and

$$V_1 = \begin{pmatrix} 0 & \sqrt{1-p} \\ \sqrt{p} & 0 \end{pmatrix}$$
 and $V_2 = \begin{pmatrix} \sqrt{p} & 0 \\ 0 & \sqrt{1-p} \end{pmatrix}$

with $p \in]0,1/2[$. The family $\{V_1,V_2\}$ defines a CPTP map Φ and verifies $(\Phi$ -erg.) and (Pur.).

 $\phi\text{-irreducibility: }\Pi^n(P_{e_0/1},\{P_{e_0},P_{e_1}\})=1$ for any n. Hence, if Π is $\phi\text{-irreducible}$ it is so only for $\phi\ll\frac{1}{2}(\delta_{P_{e_0}}+\delta_{P_{e_1}}).$ Though $\Pi^n(P_{e_+},\cdot)$ is atomic and $\Pi^n(P_{e_+},\{P_{e_0},P_{e_1}\})=0 \text{ for any } n \text{ with } e_+=\frac{1}{\sqrt{2}}(1,1)^\mathsf{T}. \text{ Hence}$

. Particularly,

$$\left\|\delta_{P_{e_0}}\Pi^n - \delta_{P_{e_+}}\Pi^n\right\|_{TV} = 1, \quad \forall n \in \mathbb{N}.$$

 $\phi(A) > 0 \implies P(\tau_A < \infty | \rho_0 = P_{e_\perp}) = 0$

Contractivity: For all $n \in \mathbb{N}$ and $j_1, \ldots, j_n \in \{1, \ldots, \ell\}$,

$$d\left(\frac{V_{j_n}\dots V_{j_1}P_{e_0}V_{j_1}^*\dots V_{j_n}^*}{\operatorname{tr}(V_{j_1}^*\dots V_{j_n}^*V_{j_n}\dots V_{j_1}P_{e_0})}, \frac{V_{j_n}\dots V_{j_1}P_{e_1}V_{j_1}^*\dots V_{j_n}^*}{\operatorname{tr}(V_{j_1}^*\dots V_{j_n}^*V_{j_n}\dots V_{j_1}P_{e_1})}\right)=1.$$

Proof of uniqueness structure

- 1. Assuming (Φ -erg.), for any Π -invariant probability measure, the distribution of the sequences $(j_n)_n$ of J measurement results is the same,
- 2. Assuming (Pur.), there exists a process $(\sigma_n)_n$ taking value in \mathcal{D} and depending only on $(j_n)_n$ s.t.

$$\lim_{n\to\infty} d(\rho_n,\sigma_n) = 0 \quad a.s.$$

Measurement results unique invariant measure

Lemma

Assume (Φ -erg.) holds. Then, for any Π -invariant probability measure ν over \mathcal{D} ,

$$\mathsf{Prob}(j_1,\ldots,j_n|\rho_0 \sim \nu) = \mathsf{tr}(V_{j_1}^*\ldots V_{j_n}^*V_{j_n}\ldots V_{j_1}\rho_{\mathsf{inv}})$$

with $\rho_{inv.}$ the unique element of \mathcal{D} s.t. $\Phi(\rho_{inv.}) = \rho_{inv.}$

Proof.

Given a fixed initial state, the distribution of J measurement results is given by:

$$\mathsf{Prob}(j_1,\ldots,j_n|\rho_0=\rho)=\mathsf{tr}(V_{j_1}^*\ldots V_{j_n}^*V_{j_n}\ldots V_{j_1}\rho).$$

Linearity in ρ implies,

$$\mathbb{E}_{\nu}\left[\mathsf{Prob}(j_1,\ldots,j_n|\rho_0=\rho)\right] = \mathsf{Prob}(j_1,\ldots,j_n|\rho_0=\rho_{\nu})$$

with $\rho_{\nu} = \mathbb{E}_{\nu}[\rho]$.

Recall that $\mathbb{E}_{\nu}(\rho_1) = \Phi(\rho_{\nu})$, but the Π -invariance of ν implies $\mathbb{E}_{\nu}(\rho_1) = \rho_{\nu}$. Hence Perron-Frobenius Theorem of positive linear maps imply ρ_{ν} is the unique fixed point state of Φ .

Polar decomposition

Set,

$$W_n := V_{j_n} \dots V_{j_1}$$
.

Definition

Let $(M_n)_n$ be the process:

$$M_n := rac{W_n^* W_n}{\operatorname{tr}(W_n^* W_n)} \quad \text{if } W_n
eq 0$$

and arbitrarily fixed in any other case.

Definition

Let U_n and D_n be two processes s.t. $U_nD_n=W_n$ is a polar decomposition of W_n .

Remark

$$\rho_n = \frac{W_n \rho W_n^*}{\operatorname{tr}(W_n^* W_n \rho)} = U_n \frac{\sqrt{M_n} \rho \sqrt{M_n}}{\operatorname{tr}(M_n \rho)} U_n^* \quad a.s.$$

Asymptotic rank one POVM

Proposition

Let $\rho_{ch} := \operatorname{Id}_d / d$.

(i) For any probability measure ν over \mathcal{D} ,

$$M_{\infty} := \lim_{n \to \infty} M_n$$

exists a.s. and in L¹-norm. Moreover $\mathbb{E}(M_{\infty}|\rho_0=\rho_{ch})=\rho_{ch}$.

(ii) The process M_n is a positive bounded martingale w.r.t. $Prob(\cdot | \rho_0 = \rho_{ch})$. It follows that for any $\rho \in \mathcal{D}$,

$$dProb(\cdot | \rho_0 = \rho) = d \operatorname{tr}(M_{\infty} \rho) dProb(\cdot | \rho_0 = \rho_{ch}).$$

(iii) If (Pur.) holds, there exists a random varibale z taking value in $\mathbb{C}^k \setminus \{0\}$ s.t.

$$M_{\infty} = P_z$$
 a.s.

Remark

- z depends only on $(j_n)_n$,
- The explicit expression of dProb($\cdot | \rho_0 = \rho$)/ dProb($\cdot | \rho_0 = \rho_{ch}$) implies that,

$$tr(\rho P_z) > 0$$
 a.s.

Convergence towards a process depending only on the \boldsymbol{J} measurement results

Lemma

Assume (Pur.) holds. Let $(\sigma_n)_n$ be the process taking value in \mathcal{D} defined by,

$$\sigma_n = U_n P_z U_n^*.$$

Then,

$$\lim_{n\to\infty}d(\rho_n,\sigma_n)=0\quad \text{a.s.}$$

Proof.

$$\lim_{n\to\infty}U_n^*\rho_nU_n=\lim_{n\to\infty}\frac{\sqrt{M_n}\rho\sqrt{M_n}}{\operatorname{tr}(M_n\rho)}=\frac{P_z\rho P_z}{\operatorname{tr}(P_z\rho)}=P_z\quad \text{a.s.}$$

The lemma follow from ${\rm tr}(P_z \rho) > 0$ a.s. and

$$d(\rho_n, \sigma_n) = d(U_n^* \rho_n U_n, P_z).$$

_

Uniqueness proof

The uniqueness of the invariant measure follows then from a simple $\epsilon/3$ argument.

Let ν_a and ν_b be two Π -invariant probability measures over \mathcal{D} .

Since $(\sigma_n)_n$ depends only on the sequence $(j_n)_n$, the first lemma implies:

$$(\sigma_n)_n$$
 w.r.t. $u_a \sim (\sigma_n)_n$ w.r.t. u_b

Then $\rho_n \sim \nu_{a/b}$ and the a.s. convergence $d(\rho_n, \sigma_n) \to 0$ w.r.t. both $\nu_{a/b}$ implies $\nu_a = \nu_b$.

Convergence

Theorem (BFPP '17)

If assumptions (Φ -erg.) and (Pur.) hold, then there exists $0 < \lambda < 1$ and C > 0 s.t. for any probability measure ν over \mathcal{D} ,

$$W_1\left(\frac{1}{m}\sum_{r=0}^{m-1}\nu\Pi^{mn+r},\nu_{inv.}\right)\leq C\lambda^n$$

with $m \in \{1, ..., d\}$ the period of Φ .

The proof is again split in two.

• (Φ-erg.)
$$\Longrightarrow \left\| \frac{1}{m} \sum_{r=0}^{m-1} \Phi^{\circ mn+r}(\rho) - \rho_{inv.} \right\| \le C \lambda^n \Longrightarrow$$

$$\left\| \frac{1}{m} \sum_{r=0}^{m-1} \operatorname{Prob}(\cdot | \Phi^{mn+r}(\rho_0)) - \operatorname{Prob}(\cdot | \rho_0 = \rho_{inv.}) \right\|_{T_{\bullet}^{\bullet}} \le C \lambda^n.$$

• (Pur.) $\implies \exists \ (\hat{\rho}_n)_n$ taking value in \mathcal{D} and depending only on $(j_n)_n$ s.t. for any probability measure ν over \mathcal{D} ,

$$\mathbb{E}_{\nu}(d(\rho_n,\hat{\rho}_n)) \leq C\lambda^n$$
.

The result follows then from an $\epsilon/3$ argument over the expectation of 1-Lipschitz functions and Kantorovich-Rubinstein duality theorem.

Estimate $\hat{\rho}_n$ definition

Definition

Let $(\hat{P}_n)_n$ be the sequence of maximum likelihood estimates of the quantum trajectory initial state.

$$\hat{P}_n := \mathsf{argmax}_{
ho \in \mathcal{D}} \, \mathsf{tr}(V_{j_1}^* \ldots V_{j_n}^* V_{j_n} \ldots V_{j_1}
ho)$$

Proposition

- The estimate $(\hat{P}_n)_n$ is in general not consistent.
- If assumption (Pur.) holds, then,

$$\lim_{n\to\infty} \hat{P}_n = P_z \quad a.s.$$

Definition

$$\hat{\rho}_n := \frac{W_n \hat{P}_n W_n^*}{\operatorname{tr}(W_n \hat{P}_n W_n^*)} = U_n \hat{P}_n U_n^*.$$

Lemma

Assume (Pur.) holds. Then there exists C>0 and $0<\lambda<1$ s.t. for any probability measure ν ,

$$\mathbb{E}_{\nu}(d(\rho_n,\hat{\rho}_n)) \leq C\lambda^n$$
.

Proof limitations

- The definition of (Pur.) is unsatisfactory. It is difficult to check for explicit
 matrices V_i,
- No information on the continuity of the invariant probability measure.