Quantum trajectories: invariant measure uniqueness and
mixing
arXiv:1703.10773

with M. Fraas, Y. Pautrat and C. Pellegrini

Tristan Benoist
Venice, August 2017

IMT, Université Paul Sabatier



A canonical experiment (S. Haroche's group)

[P

[

1101111111110011101101111
ddcbccabedaadaabadddbadbe

0101001101010101101011111
dababbaacbccdadeccdecbaaacc

0001000110110000001010110
ddcaddabbccdccbedaabbecab

0001010100000100011101101
bedaddaabbbbdbdcdccadaada

Images: LKB ENS



State space

Definition (Quantum states)

Density matrices :
D:={pe Mqy(C)|p=0,trp=1}

Definition (Pure states)

Pure states are the extreme points of D. Namely, p € D is a pure state iff.
Ix € C9\ {0} s.t.

Definition (Metric)

Unitary invariant norm distance:

d(p,a) = llp = o]-

Remark
For U € U(d), d(UpU*,UcU*)=d(p,0).



System evolution without conditioning on measurements

Definition (Completely positive trace preserving (CPTP) maps)

Without conditioning on measurement results the system evolution is given by a
CPTP map:

¢:D—-D

4
P D VipVf
j=1

with Kraus operators V; € My(C) forall j=1,...,¢ s.t. Zle \/J*\/J =Idy.

Remark
Seeing ® as arising from the interaction of the system with an auxiliary system
(probe), Kraus operators V; = (ej|UV) := f:l Uij(ej| V) with:

e The initial state of the probe |W)(W|
e The system—probe interaction U

e The observable measured on the probe J := Zlej\ej)(eﬂ

Different observables on the probe give different V; but same ®.

l

d(p) = trprobe(Up® PWU Z ej|Uw W|U*ej>'
Jj=1



Indirect measurement

Initial state: p € D

e Evolution unconditioned on the measurement: p — ®(p).



Indirect measurement

Initial state: p € D

e Evolution unconditioned on the measurement: p — ®(p).

e Conditioning on the measurement of J:

ey
t(V Vo)’

/

pr>p with prob. tr(V}"V;p)



Indirect measurement

Initial state: p € D

e Evolution unconditioned on the measurement: p — ®(p).

e Conditioning on the measurement of J:

with prob. tr(V}"V;p)

Remark that:
E(o'lp) = ®(p).



Repeated interactions
Probes : Q Q Q ‘ Q w:/ ‘\:\

U

e Without conditioning on the measurement, after n interactions: p, = ®°"(p).



Repeated interactions

Measurements

e (OO OO OO

U

Jns In—1s -5 ]2, 1 ‘

e Without conditioning on the measurement, after n interactions: p, = ®°"(p).
e Given the state after n — 1 measurements of J is p,_1, after n measurements of J:
Vjpnfl Vj*

=———2 _ with prob. tr(V/Vipp_1).
tr(V;"Vipn-1) s

Pn -
Equivalently, given pg = p, after n measurements of J producing result sequence

Jpoooplfis

VipVE LV
pn = Ao n o with prob. tr(VE ... VF
tr(VE .. VeV, Vo) A

V...

Vi p)-



Quantum trajectories as Markov chains

Definition (Quantum trajectory)

Given a finite set of d X d matrices {\/J}f:1 s.t. Zle Vi*Vj =Id4, a quantum
trajectory is a realization of the Markov chain of kernel:

4 V.oV*
P
p,A) = E 1 S - t Vv*V-p

( : j=1 " (tr(vj*vjp)> 4 s )

for any A C D mesurable.



Preliminary results: Perron—Frobenius Theorem for CPTP maps

Definition (Irreducibility)
The CPTP map & is said irreducible if the only non null orthogonal projector P such
that ®(PMy(C)P) C PMy(C)P is P = 1dy.

Theorem (Evans, Hgegh-Krohn ’78)
A CPTP map ¢ : My(C) — My(C) is irreducible iff. 3!p;n,. € D s.t. pin,. > 0 and
d)(pinv.) = Pinv. -

Moreover, if ® is irreducible, its modulus 1 eigenvalues are simple and form a finite
sub group of U(1). The sub group size m € {1,...,d} is equal to the period of ® and
J0<A<1land C >0s.t VpeD,

L3 0% () — gy | < CA™
m

H m—1
r=0




Preliminary results: Strong law of large numbers for the state

Theorem (Kiimmerer, Maassen '04)

Let (pn)n be a quantum trajectory. Then,

1 n
lim — Zpk = poo a.s.
k=1

n—oo n

with ®(poc) = poo. Particularly, if ® is irreducible, poc = piny. a.s.



Preliminary results: Purification

For any p € D let S(p) := — tr(plog p) be its von Neumann entropy. Then:

S(p) =0 <= rank(p) =1 <= pis a pure state.

Theorem (Kiimmerer, Maassen '06)

The following statements are equivalent:
1. An orthogonal projector 7 s.t. 7rV’1‘ \/J: Vi, -+ Vjym o< m for all
Jis---Jp €{1,..., 4} is of rank 1,

2. For any pg € D,
lim S(pn) =0 a.s.
n— o0

Remark
o Ifmisst V- V: Vi, Vymocm forall ji,...jp € {1,...,£}, there exists
1 H ™
unitary matrices Uﬂ’m’jp s.t.
Vo=V e U e

e In dimension d = 2, either lim,— o0 S(pn) = 0 a.s., or all the matrices \/j are
proportional to unitary matrices.



Uniqueness and convergence towards the invariant measure

Theorem (B., Fraas, Pautrat, Pellegrini '17)

If the following two assumptions are verified,

(®-erg.) & is irreducible,
(Pur.) Any orthogonal projector T s.t. 7r\/; - VEVS

& ip "+ Vi o< for all
Jis---Jp €{1,..., 4} is of rank 1,

M accepts a unique invariant probability measure vj,, .

Moreover, 30 < A < 1 and C > 0 s.t. for any probability measure v over D,

1 m—1
Wy ( > un"’"“,u,-nv.) <can

m r=0

with m € {1,...,d} the period of ®.



Previous similar results

e Products of i.i.d. (Furstenberg, Guivarc’h, Kesten, Le Page, Raugi ...’60-'80,
Books: Bougerol et Lacroix '85, Carmona et Lacroix '90) Markov kernel:

Y4 *
pV
olp A Z <tr V*Vjp)>pj

with (pj)f:1 a probability measure over {1,...,¢}.
e Generalization (Guivarc’h, Le Page '01-'16) Markov kernel:

VipVr* s
Ms(p, A) = N (s) lzlA < \’/*\; )> CATIN
for s >0 (Q. Traj.: s =1).

No assumption that Zj VJ*VJ = Idg but the matrices V; need be invertible and a
stronger irreducibility condition is assumed.

° {\/j}f:1 is strongly irreducible(i.e. no non trivial finite union of proper subspaces
is preserved by the matrices V;. Then, strong irreducibility = (®-erg.)),

e The smallest closed sub semigroup of GL,(C) containing {V}[ , is contracting
(equivalent to (Pur.) for a strongly irreducible family of |nvert|b|e matrices).



e Let p€]0,1[ and
0 P 0 0 N 0 0
Vi = Vo = Va = V4 = .
0) (i O e (F ) (S
The family {V4, Va2, V3, V4 } verifies conditions ($-erg.) and (Pur.).

1 (1 0 1 (0 1
Z\ﬁ<0 1> and X\/§<1 0>.

The family {Z, X} verifies (¥-erg.) but not (Pur.). There exists uncountably
many mutually singular lM-invariant probability measures concentrated on the

e Let,

pure states.

1 f 1 i si
7L (e (i and X — L 'co.sl isinl ‘
V2 \0 e V2 \isinl cosl
The family {Z, X} verifies (-erg.) but not (Pur.). Nevertheless I accepts a
unique invariant probability measure concentrated on pure states.

o Let,



Non suitable methods

Let, & = (1,0)7, &1 = (0,1) and

V1<0 1—p> and V2<\/I3 0 )

VP 0 0 Jvi—p
with p €]0,1/2[. The family {V4, V»} defines a CPTP map ® and verifies ($-erg.)
and (Pur.).

¢-irreducibility: N"(Pe, ;. {Pey, Pe; }) = 1 for any n. Hence, if M is ¢-irreducible it is
so only for ¢ < %(5&0 + §pel). Though N"(Pe, ,- ) is atomic and

N"(Pe,,{Pey, Pe, }) = 0 for any n with ey = %(17 1)T. Hence

$(A) >0 = P(7a < o0|pg=Pe,) =0

. Particularly,

=1, VneN.

Hépeo " —op, M" TV

Contractivity: For all n € N and ji,...,jn € {1,...,¢},

Vi ViPaVi Vi Vi VaPaVioo Vi )L
(Vi Vi ViPe) TV ViV ViPe)




Proof of uniqueness structure

1. Assuming (®-erg.), for any M-invariant probability measure, the distribution of
the sequences (jp)n of J measurement results is the same,

2. Assuming (Pur.), there exists a process (o), taking value in D and depending

only on (jn)n s.t.
lim d(pn,0n) =0 a.s.
n—oo



Measurement results unique invariant measure

Lemma

Assume (P-erg.) holds. Then, for any M-invariant probability measure v over D,
Prob(js, ..., jaloo ~ v) = ”(fo e ij Vi, - Vi pinv.)
with piny. the unique element of D s.t. ®(piny.) = Pinv.-

Proof.
Given a fixed initial state, the distribution of J measurement results is given by:

Prob(ji, ..., jnlpo = p) = tr(V;i ... V"V, ...V} p).
Linearity in p implies,

E. [Prob(j1, . . . jnlpo = p)] = Prob(j1, ..., jnlpo = pv)

with Pv = EV[p]'

Recall that E, (p1) = ®(pv ), but the M-invariance of v implies E, (p1) = p.. Hence
Perron-Frobenius Theorem of positive linear maps imply p, is the unique fixed point
state of ®. O



Polar decomposition

Set,
Wo =V, ... V.
Definition
Let (Mp)n be the process:
W* W,
= —1 W, #0
tr(Wi W)

and arbitrarily fixed in any other case.
Definition
Let U, and D, be two processes s.t. UyD, = W, is a polar decomposition of W,.

Remark

_ WhpW)y _ v Mnpy/ My
tr(W; Wop) " tr(Mpp)

Pn U, as.



Asymptotic rank one POVM

Proposition
Let pep :=1dy /d.

(i) For any probability measure v over D,
My = lim M,
n—oo

exists a.s. and in L1-norm. Moreover E(Moo|po = pep) = peh-

(ii) The process M, is a positive bounded martingale w.r.t. Prob( - |po = pcp). It
follows that for any p € D,

dProb( - [po = p) = d tr(Mocp) dProb( - [po = pch)-
(iii) If (Pur.) holds, there exists a random varibale z taking value in C¥\ {0} s.t.
Moo = P, a.s.
Remark

e z depends only on (jn)n,
e The explicit expression of dProb( - |po = p)/ dProb( - |po = pcn) implies that,

tr(pPz) >0 a.s.



Convergence towards a process depending only on the J measurement results

Lemma
Assume (Pur.) holds. Let (o0,)n be the process taking value in D defined by,

on = UsP,Uy.
Then,

lim d(pn,0n) =0 a.s.
n—oo

Proof.

. * g V anv M, Pszz
lim UypnUs = lim = =P, a.s.
n—o0 n—oo  tr(Mpyp) tr(P;p)

The lemma follow from tr(P,p) > 0 a.s. and

d(p,,,o’,,) = d(U:p,,Un, PZ)'



Uniqueness proof

The uniqueness of the invariant measure follows then from a simple ¢/3 argument.

Let v, and v}, be two [M-invariant probability measures over D.

Since (0,)n depends only on the sequence (jn)n, the first lemma implies:

(0n)n W.rt. va ~ (on)n W.r.t. vp

Then pn ~ v,/;, and the a.s. convergence d(pn,on) — 0 w.r.t. both v,/p implies
Vs = Up.




Convergence

Theorem (BFPP ’'17)

If assumptions ($-erg.) and (Pur.) hold, then there exists 0 < A < 1 and C > 0 s.t.
for any probability measure v over D,

1 m—1
W, (m > unm"“,umv.) <can
=0

with m € {1,...,d} the period of ®.



Proof structure

The proof is again split in two.

o (@erg) = |[ZErgt oo (o) — pp | < O =

< CA™.

1 m—1
Hm Z Prob( - |[®™"(pg)) — Prob( - |po = pinv.)
TV

r=0

e (Pur.) = 3 (pn)n taking value in D and depending only on (jn)s s.t. for any
probability measure v over D,

Ev (d(pn, pn)) < CA".

The result follows then from an €/3 argument over the expectation of 1-Lipschitz
functions and Kantorovich-Rubinstein duality theorem.



Estimate p, definition

Definition
Let (.‘5,,),, be the sequence of maximum likelihood estimates of the quantum trajectory

initial state.

P, = argmax,cp tr(Vy ... V'V ... V) p)

Proposition

o The estimate (P,), is in general not consistent.

o [f assumption (Pur.) holds, then,

lim P, =P, a.s.
n—oo

Definition
W, Po Wt 5
= — UnPnU?.
tr(W, P, W)
Lemma
Assume (Pur.) holds. Then there exists C > 0 and 0 < A < 1 s.t. for any probability
measure v,

Ev(d(pn, fn)) < CA".



Proof limitations

e The definition of (Pur.) is unsatisfactory. It is difficult to check for explicit
matrices V;,

e No information on the continuity of the invariant probability measure.




