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Classical estimation

State space: Ω (finite)

Distribution: Probab. meas. π ∈ P(Ω)

Goal: estimate π.

I.i.d.: (Yk )k∈N, Yk ∼ π

Markov process: (Xt)t∈R+ with generator L, unique invariant measure πL = 0.

Two estimators of π:

En :=
1

n

n∑
k=1

δYk
.

Et :=
1

t

∫ t

0
δXsds.
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Deviation bounds

Sanov’s theorem:

lim
n→∞

1

n
logP(d(En, µ) ≤ R) = − inf

ν:d(ν,µ)≤R
D(ν|π).

D(ν|π) :=
∑
i∈Ω

ν(i) log
ν(i)

π(i)
.

Donsker-Varadan’s theorem:

lim
n→∞

1

t
logP(d(Et , µ) ≤ R) = − inf

ν:d(ν,µ)≤R
I (ν).

I (ν) := sup
a>0

−
∑
i∈Ω

ν(i)
(La)(i)

a(i)

 .
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Reversible Markov Chains

Definition (Detailed balance condition)
The Markov generator L is said to verify detailed balance if it is self-adjoint with

respect to the inner product ⟨a, b⟩π := Eπ(ab) =
∑

i∈Ω π(i)a(i)b(i).

Equivalently if π(i)Lij = π(j)Lji .

Definition
Dirichlet form

EL(a) = −⟨a, La⟩π

Theorem (Deuschel, Stroock ’01)
If L verifies the detailed balance condition, I (ν) = EL(a) with a =

√
dν/dπ

Moreover, for any function f : Ω → R, any initial distribution ν and r ≥ 0,

lim
t→∞

1

t
logPν

(
1

t

∫ t

0
f (Xs)− Eπ(f ) > r

)
= −If (Eπ(f ) + r)

with If the lower semi-continuous regularization of

Jf : x 7→ inf
∥g∥

L2(π)
=1

{
EL(g) : Eπ(fg

2) = x
}
.
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Functional inequalities and concentration bounds

Definition (Logarithmic Sobolev inequality and constant)
Let f =

√
dν/dπ. Logarithmic Soboloev inequality: αD(ν|π) ≤ EL(f )

Logarithmic Sobolev constant: α(L) maximal α such that the inequality holds.

Definition (Transportation-information inequality)
For ν ≪ π let f =

√
dν/dπ. There exist C > 0 such that for any such ν,

W1(ν, π) ≤
√

2CEL(f )

Proposition (Guillin, Léonard, Wu, Yao ’09)
Let f =

√
dν/dπ. If the transportation-information inequality holds with constant

C > 0, then for any Lipschitz function g,

Pν

(
1

t

∫ t

0
g(Xs)ds − Eπ(g) > r

)
≤ ∥f ∥L2(π) exp

(
−

tr2

2C∥g∥2Lip

)
.
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Quantum estimator

Hilbert space: H (finite dimension)

Density operators: σ ∈ D(H)

Goal: estimate σ.

Estimators?

B. Huard’s group experiment (ENS Lyon)

a

b

0 1 2 3 4 5
time (µs)

-10

-5

0

5

10

Si
gn

al
 (m

V)

c

yx

z

6 / 16



Quantum Markov dynamics

Dynamics: Semigroup of unital completly positive maps

etL : B(H) → B(H)

etLId = Id.

Theorem (Gorini, Kossakowski, Sudarshan ’76 and Lindblad ’76)
There exists H ∈ B(H) such that H = H∗ and L : B(H) → B(H)⊗ Ck such that,

L : A 7→ i [H,A] + L∗(A⊗ Id
Ck )L− 1

2
(L∗LA+ AL∗L).

Definition (Primitive semigroup)
The semigroup (etL)t is primitive if there exists a unique σ ∈ D positive definite such

that tr(σetL(A)) = tr(σA) for any A ∈ B(H). Or equivalently tr(σL(A)) = 0 for any

A ∈ B(H).

From now on we always assume (etL) is primitive with unique invariant density

operator σ > 0.
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Estimators

There exists a Markov process (ρt)t taking value in D, called quantum trajectory, such

that

Eρ(tr[ρtA]) = tr[ρetLA]

for any A ∈ B(H) and there exists u ∈ Sk−1(C) such that the measured signal

(Xt(u))t is given by

Xt(u) =

∫ t

0
tr(O(u)ρs)ds +Wt

with

O(u) = u.L+ (u.L)∗ =
dimH∑
i=1

uiLi + ūiL
∗
i .

The derivation of these processes follows from quantum stochastic calculus.

Remark: The process (ρt) is Markov but not (Xt(u)).

Theorem (Kümmerer, Maassen ’04)
Almost surely,

lim
t→∞

1

t
Xt(u) = tr(O(u)σ)
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Deviation bounds

There exists a quantum equivalent of Sanov’s theorem for i.i.d estimation of σ with

rate

S(ρ|σ) = tr[ρ(log ρ− log σ)].

And an equivalent of Donsker-Varadan’s theorem for (Xt(u)):

Theorem (Jakšić, Pillet, Westrich. ’14)
There exists a good rate function I such that full large deviation principle holds:

lim
t→∞

1

t
logPρ

(
1
t
Xt(u) > tr(O(u)σ) + r

)
∼ −I (tr(O(u)σ) + r).

Can we relate I to a non-commutative version of Dirichlet’s form?
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Non commutative Dirichlet’s form

Definition (KMS inner product)

⟨A,B⟩σ = tr(σ
1
2 A∗σ

1
2 B).

Definition ((symmetrized) Dirichlet’s form)

E : A 7→ 1
2
(⟨A,L(A)⟩σ + ⟨L(A),A⟩σ).

Theorem (B., Hänggli, Rouzé ’21)
Let Φu(A) = Au.L+ (u.L)∗A and fu(A) =

1
2
(⟨A,Φu(A)⟩σ + ⟨Φu(A),A⟩σ). Then, for

any t, r ≥ 0 and ρ ∈ D, setting D = σ− 1
4 ρ

1
2 σ− 1

4 ,

Pρ(
1
t
Xt(u) > tr(O(u)σ) + r)

≤ ∥D∥L2(σ) exp

(
−t inf

∥A∥
L2(σ)

=1
{E(A) + 1

2
(fu(A) + tr(O(u)σ) + r)2}

)
.

We have a deviation bound interpretation of non commutative Dirichlet’s form.

Compared to the classical bound not optimisation on a subset of measures but a

quadratic penalization term.

Proof: Based on quantum stochastic calculus, Markov’s inequality, Ando-Lieb

concavity theorem and a minimax theorem.

10 / 16



Reversible quantum Markov semigroup

Definition (KMS Quantum Detailed Balance (KMS QDB))
The semigroup etL (or equivalently L) verifies KMS QDB if L is symmetric with

respect to KMS inner product.

Proposition (Fagnola, Umanità ’10, Amorim, Carlen ’21)
If L verifies KMS QDB, then there exists u ∈ Sk−1(C) such that Φu as defined in

previous theorem is symmetric with respect to KMS inner product.

Theorem (B., Hänggli, Rouzé ’21)
Assume L verifies KMS QDB and u ∈ Sk−1(C) is such that Φu is KMS symmetric.

Then, the rate function I for (Xt(u))t LDP is such that

I (x) = inf
∥A∥

L2(σ)
=1

{E(A) + 1
2
(fu(A) + x)2}.

We have saturation of the deviation bound depending on Dirichlet’s form.
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GNS QDB

To discuss functional inequalities and concentration bounds we require a more

restrictive notion of detailed balance.

Definition (GNS QDB)
The generator L (or the semigroup it generates) verifies GNS QDB if it is symmetric

with respect to the inner product

(A,B) 7→ tr[σA∗B].

Theorem (Fagnola, Umanità ’10)
Assume L verifies GNS QDB. Then it verifies KMS QDB.

The reversed implication does not hold (Carlen, Maas ’17 and B., Cuneo, Jaksic, Pillet

’22).

Example of GNS QDB semigroup: Depolarizing channels, Davies generators.

Remark: We also have GNS QDB =⇒ BKM QDB and not the opposite (Carlen,

Maas ’17). However KMS and BKM notions of QDB are not comparable (B., Hänggli,

Rouzé ’21).
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Non commutative functional inequalities

Definition (Logarithmic Sobolev inequality and constant)

For ρ ∈ D, let D = σ− 1
4 ρ

1
2 σ− 1

4 . Logarithmic Sobolev inequality: α2S(ρ|σ) ≤ E(D).

The best constant α2(L) is the logarithmic Sobolev constant.

The right hand side has now a statistical interpretation.

Definition (Transportation cost-information inequality)

There exists C > 0 such that for any ρ ∈ D, setting D = σ− 1
4 ρ

1
2 σ− 1

4 ,

W1,L(ρ, σ) ≤
√

2CE(D).

Remark: The Wassestein distance we consider here depends on a choice of L and

requires GNS QDB.
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Concentration bound(s)

Theorem (B., Hänggli, Rouzé ’21)
Assume transportation cost-information inequality holds with constant C > 0. Then,

for any u ∈ Sk−1(C), ρ ∈ D and t, r ≥ 0,

Pρ(
1
t
Xt(u) > tr(σO(u))+r) ≤ ∥D∥L2(σ) exp

−
tr2

4C∥σ
1
4 (u.L)∗σ− 1

4 + σ− 1
4 u.Lσ

1
4 ∥2Lip


with D = σ− 1

4 ρ
1
2 σ− 1

4 .

Remark: Here the Lipschitz norm depends on L and requires GNS QDB for its

definition.
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Further remarks

� We can deal with multidimensional diffusions.

� We have similar results including Poisson processes for (Xt(u)).

� The upper deviation bounds should still hold for H infinite dimensional under the

appropriate assumptions.

� Our proofs are based on a non commutative extension of stochastic calculus and

Girsanov transformation however everything can be done using classical

stochastic calculus.
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Thank you!
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