# Deviation bounds and concentration inequalities for quantum noises (arXiv:2109.13152)

Tristan Benoist, joint work with L. Hänggli and C. Rouzé.

CNRS, IMT, Toulouse (France)

BIID 9, 2021



State space:  $\Omega$  (finite)

Distribution: Probab. meas.  $\pi \in \mathcal{P}(\Omega)$ 

Goal: estimate  $\pi$ .

I.i.d.:  $(Y_k)_{k \in \mathbb{N}}$ ,  $Y_k \sim \pi$ Markov process:  $(X_t)_{t \in \mathbb{R}_+}$  with generator *L*, unique invariant measure  $\pi L = 0$ . Two estimators of  $\pi$ :

$$E_n := \frac{1}{n} \sum_{k=1}^n \delta_{Y_k}.$$
$$E_t := \frac{1}{t} \int_0^t \delta_{X_s} \mathrm{d}s$$

Sanov's theorem:

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(\mathrm{d}(E_n, \mu) \le R) = -\inf_{\nu: \mathrm{d}(\nu, \mu) \le R} D(\nu | \pi).$$
$$D(\nu | \pi) := \sum_{i \in \Omega} \nu(i) \log \frac{\nu(i)}{\pi(i)}.$$

Donsker-Varadan's theorem:

$$\lim_{n \to \infty} \frac{1}{t} \log \mathbb{P}(\mathrm{d}(E_t, \mu) \le R) = -\inf_{\nu:\mathrm{d}(\nu, \mu) \le R} I(\nu)$$
$$I(\nu) := \sup_{a > 0} \left( -\sum_{i \in \Omega} \nu(i) \frac{(La)(i)}{a(i)} \right).$$

## Definition (Detailed balance condition)

The Markov generator L is said to verify detailed balance if it is self-adjoint with respect to the inner product  $\langle a, b \rangle_{\pi} := \mathbb{E}_{\pi}(ab) = \sum_{i \in \Omega} \pi(i)a(i)b(i)$ .

Equivalently if  $\pi(i)L_{ij} = \pi(j)L_{ji}$ .

**Definition** Dirichlet form

$$\mathcal{E}_L(a) = -\langle a, La 
angle_\pi$$

#### Theorem (Deuschel, Stroock '01)

If L verifies the detailed balance condition,  $I(\nu) = \mathcal{E}_L(a)$  with  $a = \sqrt{d\nu/d\pi}$ 

Moreover, for any function  $f : \Omega \to \mathbb{R}$ , any initial distribution  $\nu$  and  $r \ge 0$ ,

$$\lim_{t\to\infty}\frac{1}{t}\log\mathbb{P}_{\nu}\left(\frac{1}{t}\int_0^t f(X_s)-\mathbb{E}_{\pi}(f)>r\right)=-l_f(\mathbb{E}_{\pi}(f)+r)$$

with If the lower semi-continuous regularization of

$$J_f: x \mapsto \inf_{\|g\|_{L^2(\pi)}=1} \left\{ \mathcal{E}_L(g) : \mathbb{E}_{\pi}(fg^2) = x \right\}.$$

Definition (Logarithmic Sobolev inequality and constant) Let  $f = \sqrt{d\nu/d\pi}$ . Logarithmic Soboloev inequality:  $\alpha D(\nu|\pi) \leq \mathcal{E}_L(f)$ 

Logarithmic Sobolev constant:  $\alpha(L)$  maximal  $\alpha$  such that the inequality holds.

**Definition (Transportation-information inequality)** For  $\nu \ll \pi$  let  $f = \sqrt{d\nu/d\pi}$ . There exist C > 0 such that for any such  $\nu$ ,

 $W_1(\nu,\pi) \leq \sqrt{2C\mathcal{E}_L(f)}$ 

**Proposition (Guillin, Léonard, Wu, Yao '09)** Let  $f = \sqrt{d\nu/d\pi}$ . If the transportation-information inequality holds with constant C > 0, then for any Lipschitz function g,

$$\mathbb{P}_{\nu}\left(\frac{1}{t}\int_{0}^{t}g(X_{s})ds-\mathbb{E}_{\pi}(g)>r\right)\leq \|f\|_{L^{2}(\pi)}\exp\left(-\frac{tr^{2}}{2C\|g\|_{\mathrm{Lip}}^{2}}\right)$$

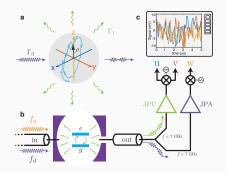
Hilbert space:  $\mathcal{H}$  (finite dimension)

Density operators:  $\sigma \in \mathcal{D}(\mathcal{H})$ 

Goal: estimate  $\sigma$ .

#### **Estimators**?

B. Huard's group experiment (ENS Lyon)



Dynamics: Semigroup of unital completly positive maps

$$e^{t\mathcal{L}}:\mathcal{B}(\mathcal{H})\to\mathcal{B}(\mathcal{H})$$

 $e^{t\mathcal{L}}$ Id = Id.

**Theorem (Gorini, Kossakowski, Sudarshan '76 and Lindblad '76)** There exists  $H \in \mathcal{B}(\mathcal{H})$  such that  $H = H^*$  and  $L : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H}) \otimes \mathbb{C}^k$  such that,

$$\mathcal{L}: A \mapsto i[H, A] + \mathsf{L}^*(A \otimes \mathrm{Id}_{\mathbb{C}^k})\mathsf{L} - \frac{1}{2}(\mathsf{L}^*\mathsf{L}A + A\mathsf{L}^*\mathsf{L}).$$

#### Definition (Primitive semigroup)

The semigroup  $(e^{t\mathcal{L}})_t$  is primitive if there exists a unique  $\sigma \in \mathcal{D}$  positive definite such that  $\operatorname{tr}(\sigma e^{t\mathcal{L}}(A)) = \operatorname{tr}(\sigma A)$  for any  $A \in \mathcal{B}(\mathcal{H})$ . Or equivalently  $\operatorname{tr}(\sigma \mathcal{L}(A)) = 0$  for any  $A \in \mathcal{B}(\mathcal{H})$ .

From now on we always assume  $(e^{t\mathcal{L}})$  is primitive with unique invariant density operator  $\sigma > 0$ .

# Estimators

There exists a Markov process  $(\rho_t)_t$  taking value in  $\mathcal{D}$ , called quantum trajectory, such that

$$\mathbb{E}_{\rho}(\mathsf{tr}[\rho_t A]) = \mathsf{tr}[\rho e^{t\mathcal{L}} A]$$

for any  $A \in \mathcal{B}(\mathcal{H})$  and there exists  $u \in S^{k-1}(\mathbb{C})$  such that the measured signal  $(X_t(u))_t$  is given by

$$X_t(u) = \int_0^t \operatorname{tr}(O(u)\rho_s) ds + W_t$$

with

$$O(u) = u.\mathbf{L} + (u.\mathbf{L})^* = \sum_{i=1}^{\dim \mathcal{H}} u_i L_i + \bar{u}_i L_i^*.$$

The derivation of these processes follows from quantum stochastic calculus.

**Remark:** The process  $(\rho_t)$  is Markov but not  $(X_t(u))$ .

Theorem (Kümmerer, Maassen '04) Almost surely,

$$\lim_{t\to\infty}\frac{1}{t}X_t(u)=\mathrm{tr}(O(u)\sigma)$$

There exists a quantum equivalent of Sanov's theorem for i.i.d estimation of  $\boldsymbol{\sigma}$  with rate

$$S(\rho|\sigma) = tr[\rho(\log \rho - \log \sigma)].$$

And an equivalent of Donsker-Varadan's theorem for  $(X_t(u))$ :

**Theorem (Jakšić, Pillet, Westrich. '14)** There exists a good rate function I such that full large deviation principle holds:

$$\lim_{t\to\infty}\frac{1}{t}\log\mathbb{P}_{\rho}\left(\frac{1}{t}X_t(u)>\operatorname{tr}(O(u)\sigma)+r\right)\sim-I(\operatorname{tr}(O(u)\sigma)+r).$$

Can we relate I to a non-commutative version of Dirichlet's form?

Definition (KMS inner product)

$$\langle A,B\rangle_{\sigma} = \operatorname{tr}(\sigma^{\frac{1}{2}}A^*\sigma^{\frac{1}{2}}B).$$

Definition ((symmetrized) Dirichlet's form)

$$\mathcal{E}: A \mapsto \frac{1}{2}(\langle A, \mathcal{L}(A) \rangle_{\sigma} + \langle \mathcal{L}(A), A \rangle_{\sigma}).$$

Theorem (B., Hänggli, Rouzé '21) Let  $\Phi_u(A) = Au.\mathbf{L} + (u.\mathbf{L})^*A$  and  $f_u(A) = \frac{1}{2}(\langle A, \Phi_u(A) \rangle_{\sigma} + \langle \Phi_u(A), A \rangle_{\sigma})$ . Then, for any  $t, r \ge 0$  and  $\rho \in \mathcal{D}$ , setting  $D = \sigma^{-\frac{1}{4}}\rho^{\frac{1}{2}}\sigma^{-\frac{1}{4}}$ ,

$$\begin{split} \mathbb{P}_{\rho}(\frac{1}{t}X_t(u) > \operatorname{tr}(O(u)\sigma) + r) \\ & \leq \|D\|_{L^2(\sigma)} \exp\left(-t \inf_{\|A\|_{L^2(\sigma)}=1} \{\mathcal{E}(A) + \frac{1}{2}(f_u(A) + \operatorname{tr}(O(u)\sigma) + r)^2\}\right). \end{split}$$

We have a deviation bound interpretation of non commutative Dirichlet's form. Compared to the classical bound not optimisation on a subset of measures but a quadratic penalization term.

**Proof:** Based on quantum stochastic calculus, Markov's inequality, Ando-Lieb concavity theorem and a minimax theorem.

# **Definition (KMS Quantum Detailed Balance (KMS QDB))** The semigroup $e^{t\mathcal{L}}$ (or equivalently $\mathcal{L}$ ) verifies KMS QDB if $\mathcal{L}$ is symmetric with

respect to KMS inner product.

**Proposition (Fagnola, Umanità '10, Amorim, Carlen '21)** If  $\mathcal{L}$  verifies KMS QDB, then there exists  $u \in S^{k-1}(\mathbb{C})$  such that  $\Phi_u$  as defined in previous theorem is symmetric with respect to KMS inner product.

**Theorem (B., Hänggli, Rouzé '21)** Assume  $\mathcal{L}$  verifies KMS QDB and  $u \in S^{k-1}(\mathbb{C})$  is such that  $\Phi_u$  is KMS symmetric. Then, the rate function I for  $(X_t(u))_t$  LDP is such that

$$I(x) = \inf_{\|A\|_{L^{2}(\sigma)}=1} \{ \mathcal{E}(A) + \frac{1}{2} (f_{u}(A) + x)^{2} \}.$$

We have saturation of the deviation bound depending on Dirichlet's form.

To discuss functional inequalities and concentration bounds we require a more restrictive notion of detailed balance.

### Definition (GNS QDB)

The generator  $\mathcal{L}$  (or the semigroup it generates) verifies GNS QDB if it is symmetric with respect to the inner product

 $(A, B) \mapsto \operatorname{tr}[\sigma A^* B].$ 

**Theorem (Fagnola, Umanità '10)** Assume  $\mathcal{L}$  verifies GNS QDB. Then it verifies KMS QDB.

The reversed implication does not hold (Carlen, Maas '17 and B., Cuneo, Jaksic, Pillet '22).

Example of GNS QDB semigroup: Depolarizing channels, Davies generators.

**Remark:** We also have GNS QDB  $\implies$  BKM QDB and not the opposite (Carlen, Maas '17). However KMS and BKM notions of QDB are not comparable (B., Hänggli, Rouzé '21).

Definition (Logarithmic Sobolev inequality and constant) For  $\rho \in D$ , let  $D = \sigma^{-\frac{1}{4}}\rho^{\frac{1}{2}}\sigma^{-\frac{1}{4}}$ . Logarithmic Sobolev inequality:  $\alpha_2 S(\rho|\sigma) \leq \mathcal{E}(D)$ .

The best constant  $\alpha_2(\mathcal{L})$  is the logarithmic Sobolev constant.

The right hand side has now a statistical interpretation.

Definition (Transportation cost-information inequality) There exists C > 0 such that for any  $\rho \in D$ , setting  $D = \sigma^{-\frac{1}{4}} \rho^{\frac{1}{2}} \sigma^{-\frac{1}{4}}$ ,

$$W_{1,\mathcal{L}}(\rho,\sigma) \leq \sqrt{2C\mathcal{E}(D)}.$$

Remark: The Wassestein distance we consider here depends on a choice of L and requires GNS QDB.

**Theorem (B., Hänggli, Rouzé '21)** Assume transportation cost-information inequality holds with constant C > 0. Then, for any  $u \in S^{k-1}(\mathbb{C})$ ,  $\rho \in \mathcal{D}$  and  $t, r \ge 0$ ,

$$\mathbb{P}_{\rho}(\frac{1}{t}X_{t}(u) > \operatorname{tr}(\sigma O(u)) + r) \leq \|D\|_{L^{2}(\sigma)} \exp\left(-\frac{tr^{2}}{4C\|\sigma^{\frac{1}{4}}(u.\mathbf{L})^{*}\sigma^{-\frac{1}{4}} + \sigma^{-\frac{1}{4}}u.\mathbf{L}\sigma^{\frac{1}{4}}\|_{\operatorname{Lip}}^{2}}\right)$$
  
with  $D = \sigma^{-\frac{1}{4}}\rho^{\frac{1}{2}}\sigma^{-\frac{1}{4}}$ .

 $\mbox{Remark:}$  Here the Lipschitz norm depends on  $\mbox{L}$  and requires GNS QDB for its definition.

- We can deal with multidimensional diffusions.
- We have similar results including Poisson processes for  $(X_t(u))$ .
- The upper deviation bounds should still hold for  ${\cal H}$  infinite dimensional under the appropriate assumptions.
- Our proofs are based on a non commutative extension of stochastic calculus and Girsanov transformation however everything can be done using classical stochastic calculus.

Thank you!