Quantum trajectories and non i.i.d. random products of matrices

Tristan Benoist

CNRS - LPT Toulouse, Université Paul Sabatier

Randomness in Physics and Mathematics Summer School, Bielefeld, August 2016

<ロ><日><日><日><日><日><日><日><日><日><日><日</td>

A canonical experiment

S. Haroche group experiment:

Pictures: LKB ENS

Average evolution

On finite dimensional Hilbert spaces.

▶ Quantum states: Finite dimensional quantum system state: Density matrices D:

$$\mathcal{D} = \{ \rho \in M_d(\mathbb{C}) \mid \rho \ge 0, \quad \text{tr} \, \rho = 1 \}.$$

▶ Observables: Self-adjoint matrices: $M_d^{sa}(\mathbb{C})$. To each observable A corresponds a random variable X_A on $\Omega = \{1, ..., d\}$ whose moments are

$$\mathbb{E}_{
ho}(X_A^n) = \operatorname{tr}(A^n
ho), \quad \forall n \in \mathbb{N}.$$

• (Average) Evolution: A completely positive trace preserving (CPTP) map $\Phi : \mathcal{D} \to \mathcal{D}$.

$$\exists \{V_i\}_{i=1,\ldots,\ell} \subset M_d(\mathbb{C}), \quad \sum_{i=1,\ldots,\ell} V_i^* V_i = I_d$$

such that,

$$\Phi(\rho) = \sum_{i=1}^{\ell} V_i \rho V_i^*.$$

$$\mathbb{E}(\rho_n) = \Phi^n(\rho)$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
3/18

Quantum trajectories

Definition (Unraveling)

Given a CPTP map Φ , fix one of its Kraus family $\{V_i\}_{i=1,...,\ell}$, then the stochastic process defined by

$$\rho_n = \frac{V_{i_n} \cdots V_{i_1} \rho V_{i_1}^* \cdots V_{i_n}^*}{\operatorname{tr}(V_{i_n} \cdots V_{i_1} \rho V_{i_1}^* \cdots V_{i_n}^*)}, \quad \text{with proba. } \mathbb{P}_{\rho}(i_1, \dots, i_n) := \operatorname{tr}(V_{i_n} \cdots V_{i_1} \rho V_{i_1}^* \cdots V_{i_n}^*)$$

is called an unraveling of Φ .

Definition (Quantum trajectory)

Let $\{V_i\}_{i=1,...,\ell} \subset M_d(\mathbb{C})$ define a CPTP map Φ . Then the Markov process defined by the Kernel,

$$(\Pi f)(\rho) = \sum_{i=1}^{\ell} f\left(\frac{V_i \rho V_i^*}{\operatorname{tr}(V_i \rho V_i^*)}\right) \operatorname{tr}(V_i \rho V_i^*)$$

is called a Quantum trajectory.

Proposition

Quantum trajectories and Unravelings define the same processes and $\mathbb{E}_{\rho}(\rho_n) = \Phi^n(\rho)$.

The dynamical system picture

ω_1 ω_2 ω_3 ω_4 ω_5 ω_6 ω_7 \cdots ω_n \cdots

 $\omega_n = 1, \ldots, \ell.$

- States of the dynamical system: $\mathcal{A} := \{1, \dots, \ell\}$
- "Trajectory" space: $\Omega = \{1, \ldots, \ell\}^{\mathbb{N}} \equiv [0, 1]$, time: $n \in \mathbb{N}^*$.
- Probability measure on the "trajectory" space Ω:

$$\mathbb{P}_{\rho}(\{\omega|\omega_k=i_k, 1\leq k\leq n\})=\mathsf{tr}(V_{i_n}\cdots V_{i_1}\rho V_{i_1}^*\cdots V_{i_n}^*),$$

• Time shift: $f \circ \phi^n(\omega_1, \omega_2, \ldots) = f(\omega_{n+1}, \omega_{n+2}, \ldots)$.

$$\mathbb{P}_{\rho} \circ \phi^{-n} = \mathbb{P}_{\Phi^n(\rho)}.$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 5/18

Perron-Frobenius Theorem for CP maps

Theorem (Perron-Frobenius [Evans, Høegh-Krohn '77])

Let $\Phi : M_d(\mathbb{C}) \to M_d(\mathbb{C})$ be a CPTP map. Then the two following statements are equivalent.

- (i) (Irr.) If an orthogonal projector P is such that $V_i P \mathbb{C}^d \subset P \mathbb{C}^d$ for all $i \in \{1, \ldots, \ell\}$, then $P \in \{0, I_d\}$.
- (ii) 1 is simple eigenvalue of Φ and the corresponding eigenstate is positive definite: $\exists ! \rho_{inv.} \in D$, s.t. $\Phi(\rho_{inv.}) = \rho_{inv.} > 0$.

Moreover, (i) or (ii) imply the peripheral spectrum of Φ is a finite subgroup of U(1):

$$\operatorname{spec}(\Phi) \cap U(1) = \{e^{i2\pi \frac{k}{m}}\}_{k=1,\ldots,m}$$

There also exist a unitary $U \in M_d(\mathbb{C})$ with spectral decomposition

$$U:=\sum_{k=1}^m e^{i2\pi \frac{k}{m}} P_k$$

・ロン ・四 と ・ ヨ と ・ ヨ ・

such that $\Phi(P_k) = P_{k-1}$.

Ergodic properties

Proposition (Convergence in total variation)

Assume Φ is irreducible. Then there exists $m\in\{1,\ldots,d^2\},$ C>0 and $\lambda<1$ such that

$$\sup_{\rho\in\mathcal{D}}\sup_{A\subset\Omega}\left|\frac{1}{m}\sum_{k=1}^{m}\mathbb{P}_{\rho}\circ\phi^{-k-mn}(A)-\mathbb{P}_{\rho_{inv.}}(A)\right|\leq C\lambda^{n}.$$

Corollary

Assume Φ is irreducible and m = 1. Then the dynamical system $(\Omega, \phi, \mathbb{P}_{\rho_{inv}})$ is exponentially mixing. For any measurable $A, B \subset \Omega$,

$$\left|\mathbb{P}_{
ho_{inv.}}(A\phi^{-n}(B))-\mathbb{P}_{
ho_{inv.}}(A)\mathbb{P}_{
ho_{inv.}}(B)\right|\leq C\lambda^{n}.$$

Remark ([Guta, van Horssen '14; Carbone, Pautrat '15])

Using particularly Perron–Frobenius Theorem, the Law of Large Numbers, the Central Limit Theorem and a Large Deviation Principle follows directly for any random variable depending only on finite sequences of $\{1, \ldots, \ell\}$ elements. A Large Deviation Principle also holds for the empirical measure over Ω .

Markov Chain first asymptotic properties

Theorem (First Law of Large Numbers [Kümmerer, Maassen '04]) Let $(\rho_n)_n$ be an unraveling of Φ . Then

$$\rho_{\infty} := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \rho_k$$

exists \mathbb{P}_{ρ} -almost surely and is such that $\Phi(\rho_{\infty}) = \rho_{\infty}$. If moreover Φ is irreducible, $\rho_{\infty} = \rho_{inv}$. \mathbb{P}_{ρ} -almost surely.

Theorem (Purification [Kümmerer, Maassen '04])

Let $\{V_i\}_{i=1,...,\ell}$ be a finite family of $d \times d$ complex matrices corresponding to the Kraus decomposition of a CPTP map Φ .

(Pur.) Assume that any orthogonal projector Q such that $QV_i^* V_i Q \propto Q$ for all $i \in \{1, \ldots, \ell\}$ is of rank 1.

Then the sequence $(\rho_n)_n$ purifies almost surely as $n \to \infty$. Namely, there almost surely exists a sequence of rank 1 orthogonal projectors $(|x_n\rangle\langle x_n|)_n \subset D$ such that

$$\lim_{n\to\infty} \|\rho_n - |x_n\rangle \langle x_n\| = 0, \quad \mathbb{P}_{\rho} - a.s..$$

It implies,

$$\lim_{n\to\infty} S(\rho_n) = \lim_{n\to\infty} -\operatorname{tr}(\rho_n \ln \rho_n) = 0, \quad \mathbb{P}_{\rho} - a.s..$$

・ロシ・(型シ・(型シ・(型・(ロシ)))

Non demolition measurement and wave function collapse

Theorem (Bauer, Bernard '11)

Non demolition: Assume that there exists an o.n.b. of pointers \mathcal{P} such that all the V_i 's are diagonal in \mathcal{P} .

Distinguishability: Assume that for any two different $x, y \in P$, there exists *i* such that $||V_ix||_2 \neq ||V_iy||_2$.

Then,

$$\lim_{n\to\infty}\rho_n=|\hat{x}\rangle\langle\hat{x}|,a.s.$$

with $\hat{x} : \Omega \to \mathcal{P}$ and

 $\mathbb{P}_{\rho}(\hat{x} = y) = \operatorname{tr}(|y\rangle\langle y|\rho).$

イロト イロト イヨト イヨト 二日

9/18

Ergodic properties of the Markov Chain

Theorem (B., Fraas, Pautrat, Pellegrini '16)

Assume (Irr.) and (Pur.) hold. Then, Π accepts a unique invariant measure $\nu_{inv.}$ and there exists $m \in \{1, ..., d^2\}$, C > 0 and $\lambda < 1$ such that, for any measure ν over D,

$$W_1\left(rac{1}{m}\sum_{k=1}^m
u\Pi^{k+mn},
u_{inv.}
ight)\leq C\lambda^n$$

where W_1 is the order 1 Wasserstein metric.

Remark

No convergence in total variation possible since if ν_a has a continuous support, ν_b is pure point and all the V_i's are invertible,

$$\|\nu_{a}\Pi^{n}-\nu_{b}\Pi^{n}\|_{TV}=1,\quad\forall n\in\mathbb{N}.$$

- ϕ -irreducibility methods are not suitable for this Markov Chain.
- Proof inspired by product of i.i.d. random matrices.
- Under stronger conditions (invertibility, strong irreducibility) Guivarc'h and Le Page proved a similar result in 2004.
- Assumptions (Irr.) and (Pur.) are optimal. A slightly more general assumption (Irr.) is necessary.

Proof structure

Proof.

 Define μ̂_n as a sequence of estimates of the initial state given the growing sequence (ω₁,..., ω_n):

$$\hat{\mu}_n = \operatorname{argmax}_{\mu \in \mathcal{D}} \ln \mathbb{P}_{\mu}(\omega_1, \dots, \omega_n).$$

Let

$$\hat{\rho}_n := \frac{V_{i_n} \cdots V_{i_1} \hat{\mu}_n V_{i_1}^* \cdots V_{i_n}^*}{\operatorname{tr}(V_{i_n} \cdots V_{i_1} \hat{\mu}_n V_{i_1}^* \cdots V_{i_n}^*)}.$$

Then (Pur.) implies

$$\mathbb{E}_{\nu}\left(\mathsf{d}(\hat{\rho}_n,\rho_n)\right)\leq C\lambda^n.$$

- 2. The estimated sequence $(\hat{\rho}_n)$ not depending on the initial state ρ , the convergence follows from the ergodic properties of $\mathbb{P}_{\mathbb{E}_{\nu}(\rho)}$ implied by (Irr.), the uniformity of the sub geometric bounds in the initial state ρ and the Markov property.
- 3. The Wasserstein metric bound is obtained by Kantorovich and Rubinstein Duality Theorem.

First consequences

Theorem (Law of Large Numbers [BFPP '16])

Assume (Irr.) and (Pur.) hold. Then for any continuous function on D, for any initial probability measure ν over D,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n f(\rho_k) = \mathbb{E}_{\nu_{inv_{\cdot}}}(f(\rho)), \quad a.s.$$

Theorem (Functional Central Limit Theorem [BFPP '16])

Assume (Irr.) and (Pur.) hold. Then for any Hölder continuous function g the Functional Central Limit Theorem Holds.

Current developments

 Hypothesis testing Ability to distinguish between different CPTP maps (mutual singularity and error exponents).

Applied to Hypothesis Testing of the arrow of time [B., Jaksic, Pautrat, Pillet '16].

- Parameter estimation [Guta, Kiukas, Levitt '15–'16].
- Dynamical Phases Characterisation of the existence of dynamical phases[Guta, van Horssen '14].

Full characterisation in terms of non differentiability of Rényi entropy on $\mathbb{R}_+[\text{BJPP}~'16~\text{in preparation}].$

Link with selection of invariant states and the failure of the CLT[B., Pautrat, Pellegrini in preparation].

First approach to the characterisation of metastable behaviour [Macieszczak, Guta, Lesanovsky, Garrahan '16].

Open questions

Markov Chain

- Regularity of the invariant measure v_{inv}.
- ▶ Relaxation of (Pur.). Mixing for products of i.i.d. elements of SU(d)?
- Large Deviation Principle for the chain. Existence of a spectral gap for Π .
- Entropy production of the chain and time reversibility.

Dynamical system

- ► Meaning of the irregularities of the Rényi entropy in terms of dynamical phases beyond non differentiability on R₊.
- Full characterisation of Dynamical Phase Transitions and metastability.

In the appropriate continuous time limit, discrete quantum trajectories converge weakly towards solutions of stochastic differential equations[Pellegrini '08-'10].

One particular issue arise in the emergence of quantum jumps[Bauer,Bernard,Tilloy '15].

The energy population p_t of the exited state of a two level atom being indirectly measured by a diffusive signal is a process solution of the following diffusive SDE.

$$dp_t = \lambda(rac{1}{2}-p_t)dt + \sqrt{\gamma}p_t(1-p_t)dW_t, \quad p_0 \in (0,1).$$

15 / 18

What is the limit of $(p_t)_t$ when $\gamma \to \infty$?

Numerical simulation of $(p_t)_t$ $(\lambda = 1, \gamma = 10^4)$:

The "spikes" do not disappear when the simulation is refined.

How to make sense of the limit?

- Use an appropriate topology that does not see the "spikes" (Meyer–Zheng convergence in measure topology).
- Find a meaning full limit towards a random variable taking value in nowhere continuous functions.
- Limit towards a Poisson measure on $[0,1] \times [0,T]$ for the local maxima.

Another approach [Bauer, Bernard, Tilloy '16]: Study in effective time by Dubins-Schwarz Theorem. Let

$$au_s := \inf\left\{t: \gamma \int_0^t p_u^2 (1-p_u)^2 du > s
ight\}.$$

Then $\tilde{p}_s := p_{\tau_s}$ should be the solution of

$$d ilde{p}_s = rac{rac{1}{2} - ilde{p}_s}{\gamma ilde{p}_s^2 (1 - ilde{p}_s)^2} ds + dB_s, \quad ilde{p}_0 = p_0.$$

[Bauer, Bernard, Tilloy '16] provides a formal proof that $(\tilde{p}_s)_s$ converges towards a Brownian motion reflected in 0 and 1.

Thank you!

