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A canonical experiment

S. Haroche group experiment:

Pictures: LKB ENS
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Average evolution

On finite dimensional Hilbert spaces.

I Quantum states: Finite dimensional quantum system state: Density matrices D:

D = {ρ ∈ Md (C) | ρ ≥ 0, tr ρ = 1}.

I Observables: Self-adjoint matrices: Msa
d (C). To each observable A corresponds a

random variable XA on Ω = {1, . . . , d} whose moments are

Eρ(X n
A) = tr(Anρ), ∀n ∈ N.

I (Average) Evolution: A completely positive trace preserving (CPTP) map
Φ : D → D.

∃{Vi}i=1,...,` ⊂ Md (C),
∑

i=1...,`

V ∗i Vi = Id

such that,

Φ(ρ) =
∑̀
i=1

ViρV
∗
i .

E(ρn) = Φn(ρ).
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Quantum trajectories

Definition (Unraveling)
Given a CPTP map Φ, fix one of its Kraus family {Vi}i=1,...,`, then the stochastic
process defined by

ρn =
Vin · · ·Vi1ρV

∗
i1
· · ·V ∗in

tr(Vin · · ·Vi1ρV
∗
i1
· · ·V ∗in )

, with proba. Pρ(i1, . . . , in) := tr(Vin · · ·Vi1ρV
∗
i1
· · ·V ∗in )

is called an unraveling of Φ.

Definition (Quantum trajectory)
Let {Vi}i=1,...,` ⊂ Md (C) define a CPTP map Φ. Then the Markov process defined
by the Kernel,

(Πf )(ρ) =
∑̀
i=1

f

(
ViρV

∗
i

tr(ViρV
∗
i )

)
tr(ViρV

∗
i )

is called a Quantum trajectory.

Proposition
Quantum trajectories and Unravelings define the same processes and Eρ(ρn) = Φn(ρ).
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The dynamical system picture

ω1 ω2 ω3 ω4 ω5 ω6 ω7 · · · ωn · · ·

ωn = 1, . . . , `.

I States of the dynamical system: A := {1, . . . , `}
I “Trajectory” space: Ω = {1, . . . , `}N ≡ [0, 1], time: n ∈ N∗.

I Probability measure on the “trajectory” space Ω:

Pρ({ω|ωk = ik , 1 ≤ k ≤ n}) = tr(Vin · · ·Vi1ρV
∗
i1
· · ·V ∗in ),

I Time shift: f ◦ φn(ω1, ω2, . . .) = f (ωn+1, ωn+2, . . .).

Pρ ◦ φ−n = PΦn(ρ).
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Perron–Frobenius Theorem for CP maps

Theorem (Perron–Frobenius [Evans, Høegh-Krohn ’77])
Let Φ : Md (C)→ Md (C) be a CPTP map. Then the two following statements are
equivalent.

(i) (Irr.) If an orthogonal projector P is such that ViPCd ⊂ PCd for all
i ∈ {1, . . . , `}, then P ∈ {0, Id}.

(ii) 1 is simple eigenvalue of Φ and the corresponding eigenstate is positive definite:
∃!ρinv. ∈ D, s.t. Φ(ρinv.) = ρinv. > 0.

Moreover, (i) or (ii) imply the peripheral spectrum of Φ is a finite subgroup of U(1):

spec(Φ) ∩ U(1) = {e i2π
k
m }k=1,...,m.

There also exist a unitary U ∈ Md (C) with spectral decomposition

U :=
m∑

k=1

e i2π
k
m Pk

such that Φ(Pk ) = Pk−1.
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Ergodic properties

Proposition (Convergence in total variation)
Assume Φ is irreducible. Then there exists m ∈ {1, . . . , d2}, C > 0 and λ < 1 such
that

sup
ρ∈D

sup
A⊂Ω

∣∣∣∣∣ 1

m

m∑
k=1

Pρ ◦ φ−k−mn(A)− Pρinv. (A)

∣∣∣∣∣ ≤ Cλn.

Corollary
Assume Φ is irreducible and m = 1. Then the dynamical system (Ω, φ,Pρinv. ) is
exponentially mixing. For any measurable A,B ⊂ Ω,∣∣Pρinv. (Aφ−n(B))− Pρinv. (A)Pρinv. (B)

∣∣ ≤ Cλn.

Remark ([Guta, van Horssen ’14; Carbone, Pautrat ’15])
Using particularly Perron–Frobenius Theorem, the Law of Large Numbers, the Central
Limit Theorem and a Large Deviation Principle follows directly for any random
variable depending only on finite sequences of {1, . . . , `} elements.
A Large Deviation Principle also holds for the empirical measure over Ω.
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Markov Chain first asymptotic properties

Theorem (First Law of Large Numbers [Kümmerer, Maassen ’04])
Let (ρn)n be an unraveling of Φ. Then

ρ∞ := lim
n→∞

1

n

n∑
k=1

ρk

exists Pρ–almost surely and is such that Φ(ρ∞) = ρ∞.
If moreover Φ is irreducible, ρ∞ = ρinv. Pρ–almost surely.

Theorem (Purification [Kümmerer, Maassen ’04])
Let {Vi}i=1,...,` be a finite family of d × d complex matrices corresponding to the
Kraus decomposition of a CPTP map Φ.
(Pur.) Assume that any orthogonal projector Q such that QV ∗i ViQ ∝ Q for all
i ∈ {1, . . . , `} is of rank 1.
Then the sequence (ρn)n purifies almost surely as n→∞. Namely, there almost
surely exists a sequence of rank 1 orthogonal projectors (|xn〉〈xn|)n ⊂ D such that

lim
n→∞

‖ρn − |xn〉〈xn|‖ = 0, Pρ − a.s..

It implies,
lim

n→∞
S(ρn) = lim

n→∞
− tr(ρn ln ρn) = 0, Pρ − a.s..
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Non demolition measurement and wave function collapse

Theorem (Bauer, Bernard ’11)
Non demolition: Assume that there exists an o.n.b. of pointers P such that all the
Vi ’s are diagonal in P.
Distinguishability: Assume that for any two different x , y ∈ P, there exists i such that
‖Vix‖2 6= ‖Viy‖2.

Then,
lim

n→∞
ρn = |x̂〉〈x̂ |, a.s.

with x̂ : Ω→ P and
Pρ(x̂ = y) = tr(|y〉〈y |ρ).
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Ergodic properties of the Markov Chain

Theorem (B., Fraas, Pautrat, Pellegrini ’16)
Assume (Irr.) and (Pur.) hold. Then, Π accepts a unique invariant measure νinv. and
there exists m ∈ {1, . . . , d2}, C > 0 and λ < 1 such that, for any measure ν over D,

W1

(
1

m

m∑
k=1

νΠk+mn, νinv.

)
≤ Cλn

where W1 is the order 1 Wasserstein metric.

Remark

I No convergence in total variation possible since if νa has a continuous support, νb
is pure point and all the Vi ’s are invertible,

‖νaΠn − νbΠn‖TV = 1, ∀n ∈ N.

I φ–irreducibility methods are not suitable for this Markov Chain.

I Proof inspired by product of i.i.d. random matrices.

I Under stronger conditions (invertibility, strong irreducibility) Guivarc’h and Le
Page proved a similar result in 2004.

I Assumptions (Irr.) and (Pur.) are optimal. A slightly more general assumption
(Irr.) is necessary.
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Proof structure

Proof.

1. Define µ̂n as a sequence of estimates of the initial state given the growing
sequence (ω1, . . . , ωn):

µ̂n = argmaxµ∈D ln Pµ(ω1, . . . , ωn).

Let

ρ̂n :=
Vin · · ·Vi1 µ̂nV

∗
i1
· · ·V ∗in

tr(Vin · · ·Vi1 µ̂nV
∗
i1
· · ·V ∗in )

.

Then (Pur.) implies
Eν (d(ρ̂n, ρn)) ≤ Cλn.

2. The estimated sequence (ρ̂n) not depending on the initial state ρ, the convergence
follows from the ergodic properties of PEν (ρ) implied by (Irr.), the uniformity of
the sub geometric bounds in the initial state ρ and the Markov property.

3. The Wasserstein metric bound is obtained by Kantorovich and Rubinstein Duality
Theorem.
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First consequences

Theorem (Law of Large Numbers [BFPP ’16])
Assume (Irr.) and (Pur.) hold. Then for any continuous function on D, for any initial
probability measure ν over D,

lim
n→∞

1

n

n∑
k=1

f (ρk ) = Eνinv. (f (ρ)), a.s.

Theorem (Functional Central Limit Theorem [BFPP ’16])
Assume (Irr.) and (Pur.) hold. Then for any Hölder continuous function g the
Functional Central Limit Theorem Holds.
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Current developments

I Hypothesis testing Ability to distinguish between different CPTP maps (mutual
singularity and error exponents).
Applied to Hypothesis Testing of the arrow of time [B., Jaksic, Pautrat, Pillet
’16].

I Parameter estimation [Guta, Kiukas, Levitt ’15–’16].

I Dynamical Phases Characterisation of the existence of dynamical phases[Guta,
van Horssen ’14].
Full characterisation in terms of non differentiability of Rényi entropy on
R+[BJPP ’16 in preparation].
Link with selection of invariant states and the failure of the CLT[B., Pautrat,
Pellegrini in preparation].
First approach to the characterisation of metastable behaviour [Macieszczak,
Guta, Lesanovsky, Garrahan ’16].
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Open questions

Markov Chain
I Regularity of the invariant measure νinv..

I Relaxation of (Pur.). Mixing for products of i.i.d. elements of SU(d)?

I Large Deviation Principle for the chain. Existence of a spectral gap for Π.

I Entropy production of the chain and time reversibility.

Dynamical system
I Meaning of the irregularities of the Rényi entropy in terms of dynamical phases

beyond non differentiability on R+.

I Full characterisation of Dynamical Phase Transitions and metastability.
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A problem for continuous time quantum trajectories

In the appropriate continuous time limit, discrete quantum trajectories converge
weakly towards solutions of stochastic differential equations[Pellegrini ’08-’10].

One particular issue arise in the emergence of quantum jumps[Bauer,Bernard,Tilloy
’15].
The energy population pt of the exited state of a two level atom being indirectly
measured by a diffusive signal is a process solution of the following diffusive SDE.

dpt = λ(
1

2
− pt)dt +

√
γpt(1− pt)dWt , p0 ∈ (0, 1).

What is the limit of (pt)t when γ →∞?
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Numerical simulation of (pt)t (λ = 1, γ = 104):

The “spikes” do not disappear when the simulation is refined.
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How to make sense of the limit?

I Use an appropriate topology that does not see the “spikes” (Meyer–Zheng
convergence in measure topology).

I Find a meaning full limit towards a random variable taking value in nowhere
continuous functions.

I Limit towards a Poisson measure on [0, 1]× [0,T ] for the local maxima.

Another approach [Bauer, Bernard, Tilloy ’16]:
Study in effective time by Dubins-Schwarz Theorem. Let

τs := inf

{
t : γ

∫ t

0
p2
u(1− pu)2du > s

}
.

Then p̃s := pτs should be the solution of

dp̃s =
1
2
− p̃s

γp̃2
s (1− p̃s)2

ds + dBs , p̃0 = p0.

[Bauer, Bernard, Tilloy ’16] provides a formal proof that (p̃s)s converges towards a
Brownian motion reflected in 0 and 1.
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Thank you!
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