Repeated nondemolition measurements and wave function collapse

Open Quantum Systems summer school Autrans July 2013

Tristan Benoist

PhD. student of Denis Bernard Joint work with Michel Bauer and Denis Bernard

Serge Haroche's group experiment

- Monochromatic photon field trapped in a superconducting cavity.
- Probed by several Rydberg atoms.

- Measurement on the atoms lead to a collapse of the field to a fixed photon number fock state.
- The limit fock states distribution corresponds to Von Neumann postulate for a direct measurement.

0

0 Courtesy of LKB-ENS

0

-Atom number,

Ref.: C. Guerlin et al. Nature 448, 889-893

Questions :

- How the state collapse ?
- What is the non-degeneracy criteria ?
- How the final state distribution depends on the trial state ?
- What is the convergence speed ?
- What is the influence of the utilization of different probe/measurement types ?

What is a nondemolition measurement ?

$$|\phi_{n+1}
angle = rac{1}{\|\langle \dag | U\Psi
angle |\phi_n
angle \|} ig \langle \dag | U\Psi
angle |\phi_n
angle$$

State of the system at time \boldsymbol{n}

```
|\phi_n(\dagger,\dagger,\ldots,\downarrow)\rangle
```

QND = a system Hilbert space basis composed of stable states under the measurement process

Law of the measurement outcomes

• If the initial system state is a pointer

$$|\phi_0
angle=|lpha
angle_{
m ,}|\phi_n
angle=|lpha
angle$$
 so

$$\|\langle \uparrow, U\Psi \rangle |\phi_n \rangle\|^2 = |\langle \uparrow, U(\alpha)\Psi \rangle|^2 = p(\uparrow |\alpha)$$

Law of the measurement outcomes :

$$\mathbb{P}_{\alpha}(\dagger, \downarrow, \dots, \downarrow) = p(\dagger | \alpha) p(\downarrow | \alpha) \dots p(\downarrow | \alpha)$$

To each pointer state we can associate a law for the outcomes :

If
$$|\phi_0
angle=|lpha
angle$$
 then, outcomes follow \mathbb{P}_{lpha}

Under this law, the measurement outcomes are i.i.d. random variables.

• If the initial state is not a pointer state

 $|\phi_0\rangle \neq |0\rangle, |1\rangle, |2\rangle, |3\rangle$

Law of the measurement outcomes :

$$\mathbb{P}(\mathbf{1},\mathbf{1},\ldots,\mathbf{1}) = \sum_{\alpha} q_0(\alpha) \mathbb{P}_{\alpha}(\mathbf{1},\mathbf{1},\ldots,\mathbf{1})$$

Under this law, the measurement outcomes are no longer i.i.d. random variables.

$$q_n(lpha)=|\langlelpha|\phi_n
angle|^2$$
 Probability to obtain the pointer if the system is directly measured at time n .

Martingale change of measure and convergence

• If $q_0(\alpha) > 0$, \mathbb{P}_{α} is absolutely continuous with respect to \mathbb{P} . So it exists a martingale $Q_n(\alpha)$ such that :

$$q_{0}(\alpha)\mathbb{P}_{\alpha}(\underbrace{\uparrow,\downarrow,\ldots,\downarrow}_{n}) = Q_{n}(\alpha;\uparrow,\downarrow,\ldots,\downarrow)\mathbb{P}(\uparrow,\downarrow,\ldots,\downarrow)$$
$$Q_{n}(\alpha) = q_{0}(\alpha)\frac{\mathbb{P}_{\alpha}(\uparrow,\downarrow,\ldots,\downarrow)}{\mathbb{P}(\uparrow,\downarrow,\ldots,\downarrow)}$$

ullet Evolution of $q_n(lpha)=|\langlelpha|\phi_n
angle|^2$ if the measurement outcomes are : $1,1,\ldots,1$

$$q_n(\alpha) = q_0(\alpha) \frac{\mathbb{P}_{\alpha}(\uparrow,\downarrow,...,\downarrow)}{\mathbb{P}(\uparrow,\downarrow,...,\downarrow)}$$

$$q_n(\alpha) = Q_n(\alpha)$$

 $q_n(\alpha) = |\langle \alpha | \phi_n \rangle|^2$ Probability to obtain the pointer if the system is directly measured at time *n*.

ullet Under ${\mathbb P}$ the "probability" of each pointer is a bounded martingale and therefore converges.

$$\lim_{n \to \infty} q_n(\alpha) = q_{\infty}(\alpha) \qquad \qquad q_0(\alpha) \mathbb{P}_{\alpha} = q_{\infty}(\alpha) \mathbb{P}$$

Non degeneracy criteria

 $\text{Limit of } q_n(\alpha) \implies \qquad q_\infty(\alpha)q_\infty(\beta)\left(p(\restriction | \alpha) - p(\restriction | \beta)\right) = 0$

$$p(\cdot|\alpha) \neq p(\cdot|\beta) \Rightarrow q_{\infty}(\alpha) = \mathbf{1}_{\alpha=\Upsilon}$$
$$\Upsilon = 0, 1, 2, 3$$

Example $p(\cdot|\alpha)$

\bigcirc	0	1	2	3
Å	3/4	1/3	2/3	1/4
A	1/4	2/3	1/3	3/4

 Υ is a random variable on the pointer state set.

$$q_{\infty}(\alpha) = \mathbf{1}_{\alpha = \Upsilon} \quad \Rightarrow \qquad \lim_{n \to \infty} |\phi_n\rangle = |\Upsilon\rangle$$
$$\mathbb{E}[q_{\infty}(\alpha)] = q_0(\alpha) \quad \Rightarrow \qquad \mathbb{P}(\Upsilon = \alpha) = |\langle \alpha | \phi_0 \rangle|^2$$

In the large *n* limit, the system state behaves as if a projective Von Neumann measurement would have been performed at time 0.

Realization space partition and non degeneracy

The non degeneracy is implied by the \mathbb{P}_{lpha} 's beeing mutually singular.

$$\mathbb{P}_{\alpha}(\Omega_{\beta}) = \delta_{\alpha,\beta} \Rightarrow q_{\infty}(\alpha) = \mathbf{1}_{\alpha = \Upsilon}$$

$$\mathbb{P}(\cup_{lpha}\Omega_{lpha})=1$$
 and $\Omega_{lpha}\cap\Omega_{eta} \stackrel{=}{=} \emptyset_{lpha
eq eta}$

In our example :

$$\Omega_{\mathbf{0}} = \{\omega \in \Omega \text{ s.t. } \lim_{n} \frac{N_{n}(\cdot;\omega)}{n} = p(\cdot|\mathbf{0})\}$$

$$\begin{aligned} q_0(\alpha) \mathbb{P}_{\alpha}(\Omega_{\beta}) &= 0 = \mathbb{E}[q_{\infty}(\alpha) \mathbf{1}_{\Omega_{\beta}}] \implies q_{\infty}(\alpha) \mathbf{1}_{\Omega_{\beta}} = 0, \ \mathbb{P} - a.s. \\ \sum_{\alpha} q_{\infty}(\alpha) &= 1 \implies q_{\infty}(\beta) = \mathbf{1}_{\Omega_{\beta}}, \ \mathbb{P} - a.s. \\ \Upsilon &= \sum_{\alpha} \alpha \mathbf{1}_{\Omega_{\alpha}} \quad \text{and} \quad \mathbb{P}(\Upsilon = \alpha) = \mathbb{P}(\Omega_{\alpha}) = q_0(\alpha) \end{aligned}$$

$$q_{\infty}(\alpha) = \mathbf{1}_{\alpha = \Upsilon} \quad \Rightarrow \quad \left| \lim_{n \to \infty} |\phi_n\rangle = |\Upsilon\rangle \right|$$

 \Rightarrow

In the large *n* limit, the system state behaves as if a projective Von Neumann measurement would have been performed at time 0.

Remark :

The limit state does not depend on the initial system state. We know the limit state just by looking at the measurement results without computing the system state evolution.

Exponential convergence

• $(\hat{1}, \hat{1}, \dots, \hat{1})$ is a sequence of i.i.d. random variables under \mathbb{P}_{α} We can apply the law of large numbers :

$$\begin{split} N_n(\cdot)/n \xrightarrow[n \to \infty]{} p(\cdot|\alpha), \ \mathbb{P}_{\alpha} - a.s. & \Rightarrow & N_n(\cdot)/n \xrightarrow[n \to \infty]{} p(\cdot|\Upsilon), \ \mathbb{P} - a.s. \end{split}$$
Recall : $q_n(\alpha) = q_0(\alpha) \frac{p(\uparrow|\alpha)^{N_n(\uparrow)} p(\downarrow|\alpha)^{N_n(\downarrow)}}{Z_n} \quad \text{with} \quad Z_n = \sum_{\beta} q_0(\beta) p(\uparrow|\beta)^{N_n(\uparrow)} p(\downarrow|\beta)^{N_n(\downarrow)}$
Applying L.L.N. : $Z_n \simeq e^{nS(\Upsilon)}$
 $S(\Upsilon) = p(\downarrow|\Upsilon) \ln[p(\downarrow|\Upsilon)] + p(\uparrow|\Upsilon) \ln[p(\uparrow|\Upsilon)]$

 $\frac{\Downarrow}{q_n(\alpha) \simeq e^{-nS(\Upsilon|\alpha)}}$

$$S(\Upsilon|\alpha)$$
 relative entropy of measurement result distribution knowing Υ with respect to the measurement result distribution knowing α

$$S(\Upsilon | \alpha) = \sum_{j} p(j | \Upsilon) \ln \left[\frac{p(j | \Upsilon)}{p(j | \alpha)} \right]$$
$$j = \downarrow, \uparrow$$

$$S(\gamma|\alpha) \ge 0$$
 and $S(\gamma|\alpha) = 0$ i.f.f. $p(\cdot|\alpha) = p(\cdot|\gamma)$

Using different probes

System state update

$$\phi_{n+1}\rangle = \frac{\langle \uparrow, U \bullet \rangle}{\|\langle \uparrow, U \bullet \rangle|\phi_n \rangle\|} |\phi_n\rangle$$

State of the system at time n

$$|\phi_n(\circ, \dagger, \bullet, \dagger, \ldots, \bullet, \downarrow)\rangle$$

The way probes are chosen can depend on time and all history : $c_n(\bigcirc | \bigcirc, \uparrow, \ldots, \bullet, \downarrow)$

The pointers are still stable which ever is the probe :

In S. Haroche's group experiment : 4 different types of indirect measurements chose randomly at each time

j	1101111111110011101101111	j	00010001101100000001010110
i	ddcbccabcdaadaabadddbadbc	i	ddcaddabbccdccbcdaabbccab
j	010100110101010101010111	j	0001010100000100011101101
i	dababbaacbccdadccdcbaaacc	i	bcdaddaabbbbdbbcdccccadaada

• Do we still have convergence ?

- What is the non degeneracy criteria ?
- What is the convergence rate ?

Martingale change of measure and convergence

We change the realizations and the measure but we keep the main features.

• Measurement realization: $\bigcirc, \hat{\uparrow}, \bullet, \hat{\uparrow}, \ldots$

Measures:

If the initial state is a pointer state: $|\phi_0
angle=|lpha
angle$

$$\mathbb{P}_{\alpha}(\underbrace{\circ, \uparrow, \bullet, \ldots, \circ, \uparrow, \bullet, \downarrow}_{2n+2}) = c_0(\circ)c_1(\bullet|\circ, \uparrow) \ldots c_n(\bullet|\circ, \uparrow, \ldots, \circ, \uparrow)p^{\circ}(\uparrow|\alpha) \ldots p^{\bullet}(\downarrow|\alpha)$$

If the initial state is not one of the pointer state: $|\phi_0
angle
eq |lpha
angle$

$$\mathbb{P} = \sum_{\alpha} q_0(\alpha) \mathbb{P}_{\alpha}$$

We still have a martingale

$$q_n(\alpha) = q_0(\alpha) \frac{\mathbb{P}_{\alpha}(\circ, \uparrow, \dots, \circ, \uparrow)}{\mathbb{P}(\circ, \uparrow, \dots, \circ, \uparrow)}$$

With
$$q_n(lpha) = |\langle lpha | \phi_n
angle|^2$$

Convergence and non degeneracy criteria

$$q_n(\alpha) = q_0(\alpha) \frac{p^{\circ}(\uparrow | \alpha) \dots p^{\bullet}(\downarrow | \alpha)}{\sum_{\beta} q_0(\beta) p^{\circ}(\uparrow | \beta) \dots p^{\bullet}(\downarrow | \beta)} \quad \text{still is a bounded martingale under } \mathbb{P}$$

As before, if the measures corresponding to each pointers are mutually singular, we have projection of the wave function.

$$\mathbb{P}_{\alpha}(\tilde{\Omega}_{\beta}) = \delta_{\alpha,\beta} \; \Rightarrow \; q_{\infty}(\alpha) = \mathbf{1}_{\tilde{\Omega}_{\alpha}}$$

Some conditions under which this condition is fulfilled :

If for any two pointers **we use almost surely infinitely many times** a measurement type fulfilling the previous non degeneracy condition, then the wave function collapse as in a direct von Neumann measurement of the pointer states;

$$\lim_{n} N_n(\bullet) = +\infty \\ p^{\bullet}(\cdot|\alpha) \neq p^{\bullet}(\cdot|\beta)$$
 $\Rightarrow q_{\infty}(\alpha)q_{\infty}(\beta) = 0$ \Rightarrow
$$\lim_{n \to \infty} |\phi_n\rangle = |\Upsilon\rangle \\ \mathbb{P}(\Upsilon = \alpha) = |\langle \alpha|\phi_0\rangle|^2$$

 \Rightarrow

In the large n limit, the system state behaves as if a projective Von Neumann measurement would have been performed at time 0.

Remark :

The limit state does not depend on the initial system state. We know the limit state just by looking at the measurement results without computing the system state evolution.

Markovian choice of probe and exponential convergence

The way one choose the probe depends only on the preceeding probe and measurement result.

$$c_n(\circ|\circ, \dagger, \dots, ullet, \downarrow) = c(\circ|ullet, \downarrow)$$
 $\circ, \dagger, ullet, \uparrow, \dots$ is a Markov chain

If the initial state is a pointer state, its transition kernel is:

$$K_{\alpha}(\bullet, {\downarrow} \mid \circ, {\uparrow}) = c(\circ \mid \bullet, {\downarrow}) p^{\circ}({\uparrow} \mid \alpha)$$

If this kernel is irreductible and aperiodic, the law of large numbers gives us:

$$\frac{N_n(\bullet,\uparrow)}{n} \xrightarrow[n \to \infty]{\mathbb{P}_\alpha - a.s.} \mu_\alpha(\bullet) p^{\bullet}(\uparrow | \alpha)$$

Again we have an exponential convergence

$$\begin{array}{c} q_n(\alpha) \simeq e^{-n\overline{S}(\Upsilon|\alpha)} \\ \overline{S}(\Upsilon|\alpha) = \sum_o \mu_{\Upsilon}(o) S^o(\Upsilon|\alpha) \\ o = \bullet, \bigcirc \end{array}$$

The rate is a mean of the different possible rate with a distribution which can depend on the limit pointer state.

Impact of probe choice freedom

This choice freedom allows to increase the convergence rate towards the limit state.

$$\min_{o=\bullet, \bigcirc} S^{o}(\gamma | \alpha) \leq \overline{S}(\gamma | \alpha) \leq \max_{o=\bullet, \bigcirc} S^{o}(\gamma | \alpha)$$

Relative entropies :

\bigcirc	0	1	2	3
0	0	0.38	0.23	0.017
1	0.36	0	0.016	0.55
2	0.23	0.017	0	0.38
3	0.016	0.55	0.36	0
				minimum
$\bigcirc ullet$	0	1	2	3
0	0	0.37	0.12	0.28
1	0.37	0	0.12	0.28
2	0.12	0.12	0	0.38
3	0.28	0.28	0.36	0
$c(\cdot) = 1/2$	2			minimum

	0	1	2	3
0	0	0.36	0.016	0.55
1	0.38	0	0.23	0.017
2	0.017	0.23	0	0.38
3	0.55	0.017	0.36	0
	I	l	l	l minimum

		$p^{\cdot}(\cdot \alpha)$	0	1	2	3
\cap	\int	Ļ	3/4	1/3	2/3	1/4
0		Î	1/4	2/3	1/3	3/4
•	\int	Ļ	2/3	1/4	1/3	3/4
		Î	1/3	3/4	1/3	1/4

Impact of probe choice freedom

Trial state Independence

In S. Haroche's experiment, the *true* state of the system is unknown. The computations are made using a *trial* state.

- True state : $|\phi_0\rangle$ Trial state : $|\hat{\phi}_0\rangle = \frac{1}{\sqrt{4}}(|0\rangle + |1\rangle + |2\rangle + |3\rangle)$ $|\hat{\phi}_{n+1}\rangle = \frac{\langle \uparrow |U \odot \rangle}{\|\langle \uparrow |U \odot \rangle |\hat{\phi}_n \rangle\|} |\hat{\phi}_n\rangle$ $\hat{q}_n(\alpha) = |\langle \alpha | \hat{\phi}_n \rangle|^2$
- ullet The law of the outcomes still is $\mathbb{P}=\sum_lpha q_0(lpha)\mathbb{P}_lpha$

 $\hat{q}_n(lpha)$ is not a martingale under $\mathbb P$ but it is under $\hat{\mathbb P}=\sum_lpha \hat{q}_0(lpha)\mathbb P_lpha$. We consider the trial state as the true state.

• Repeating our study under this *trial* measure, we obtain the convergence of $\hat{q}_n(lpha)$

$$\hat{q}_n(\alpha) \xrightarrow{\hat{\mathbb{P}}-a.s} \mathbf{1}_{\alpha=\Upsilon}$$

ullet If $\hat{q}_0(lpha)>0$ for any lpha such that $q_0(lpha)>0$, then $\hat{\mathbb{P}}(A)=1\Rightarrow \mathbb{P}(A)=1$

So
$$\hat{q}_n(\alpha) \xrightarrow[n \to \infty]{\mathbb{P}-a.s} \mathbf{1}_{\alpha=\Upsilon}$$

 Υ does not depend on the initial state. Only its law depends on it.

$$|\hat{\phi}_n\rangle \xrightarrow[n \to \infty]{\mathbb{P}-a.s.} |\Upsilon\rangle$$

The limit trial state is the same as the limit true state.

Continuous limit - outcome processes (finite dimensional joint distributions limit)

 $U = e^{-i\delta(H_{sys.} \otimes \mathbb{I} + \mathbb{I} \otimes H_{probe} + \frac{1}{\sqrt{\delta}}H_{int.})}$

Continuous time limit : $\lim \delta \to 0$, $n\delta = t$ fixed.

 δ interaction time duration

We always use the same probe.

- From the counting processes $N_n(j)$ we define processes $Y_t^{\delta}(j)$, search for their continuous limit and the law of their continuous limit. All the information on the outcomes is contained in these processes.
- Difficulty: The measures \mathbb{P}_{lpha} depend on δ
- Limit derivation scheme:

In the continuous limit the finite dimensional characteristic function of $Y_t^{\delta}(j)$ under \mathbb{P}_{\Box} is equal to the one of $X_t(j)$ under μ_{\Box} . \Box standing either for α or nothing.

Continuous limit - pointer "probability" (finite dimensional joint distributions limit)

ullet As in the discrete case, the measures $\mu_{\!\scriptscriptstyle O}$ are absolutely continuous with respect to μ

We have a martingale such that:

$$q_0(lpha)\mu_lpha= ilde{Q}_t(lpha)\mu$$
 and $ilde{Q}_t(lpha)=q_0(lpha)rac{M_t(lpha)}{M_t}$

ullet We search the continuous limit of $q_n(lpha)$

- 1-The $q_{\lfloor t/\delta \rfloor}(\cdot)$'s are functions of the $Y_t^{\delta}(j)$'s. We can find the continuous limit of their joint finite dimensional characteristic function under \mathbb{P}_{α} . (Actually we compute limit of Mellin transforms)
- 2- We identify it with the joint finite dimensional characteristic function of processes $ilde{q}_t(\cdot)$ under $\mu_lpha.$
- 3- Using the definition of $\mathbb P$ and μ we have the same identification between the continuous limit of the characteristic function under $\mathbb P$ and the characteristic function under μ .

The martingale change of measure gives us the law of $\widetilde{q}_t(\cdot)$ under μ_{\star}

$$q_{[t/\delta]}(\alpha) \xrightarrow[\delta \to 0]{\mathbb{P} \to \mu} \tilde{q}_t(\alpha)$$

ullet Once again, we can identify the limit continuous process with the Radon-Nikodym of μ_{lpha} with respect to μ .

Under
$$\mu_{_{m \Box}}$$
, $ilde{q}_t(lpha)$ has the same law as $ilde{Q}_t(lpha)$.

Thank you for your attention.

Degeneracy

Degeneracy appear when the measures corresponding to pointer states are not mutually singular.

Equivalent to a Von Neuman initial measurement.

The state does not automatically converge.

$$\langle \mathrm{d} | U(\alpha) \mathrm{d} \rangle = e^{-i\theta(\mathrm{d} | \alpha)} \sqrt{p(\mathrm{d} | \alpha)}$$

If the phase is compensated, we find a convergence.

$$\tilde{U}_n = \sum_{\alpha} e^{-i(\theta(\dagger \mid \alpha)N_n(\dagger) + \theta(\downarrow \mid \alpha)N_n(\downarrow))} |\alpha\rangle \langle \alpha |$$

$$\tilde{U}_n^* |\phi_n\rangle \xrightarrow[n \to \infty]{\mathbb{P}-a.s.} |\phi_\infty\rangle$$

 $|\phi_{\infty}
angle$ corresponds to the random state resulting from an initial direct von Neumann measurement.