Vanishing of entropy production and quantum detailed balance

joint work with N. Cuneo, V. Jakšić, Y. Pautrat, C.-A. Pillet

Tristan Benoist

MCA, July 2021

IMT, Toulouse, France

How can we characterize equilibrium?

Second law

Macroscopic Irreversibility:

Clausius (1850), thermodynamic:

$$Ep := \Delta S \geq 0$$
,

Equilibrium
$$\Longrightarrow$$
 $Ep = 0$.

Do we have the converse?

For classical Markov chains:

Ep = 0 iff the process is **reversible** iff **detailed balance** holds.

Definition (Detailed balance)

A Markov kernel P with invariant measure μ verifies detailed balance condition if P is self adjoint with respect to the inner product

$$\langle f,g\rangle_{\mu}=\int \bar{f}g\ d\mu.$$

Do we have equivalence for quantum channels?

First, we have to define notions of detailed balance and entropy production.

Second, we have to show some equivalence.

A canonical quantum optics experiment

S. Haroche group experiment:

- j 11011111111110011101101111
- i ddcbccabcdaadaabadddbadbc
- j 0101001101010101101011111
- i dababbaacbccdadccdcbaaacc

- j 0001000110110000001010110
- $oldsymbol{i}$ ddcaddabbccdccbcdaabbccab
- j 0001010100000100011101101
- i bcdaddaabbbbbbbbcccadaada

Image: LKB ENS

States and quantum channels

Definition (States)

A state ρ is a trace 1 positive semi definite matrix:

$$\rho \in \mathcal{D} := \{ \mu \in M_d(\mathbb{C}) \mid \mu \ge 0, \text{ tr } \mu = 1 \}.$$

Definition (Completely Positive (CP) maps)

A positive linear map $\Psi: M_d(\mathbb{C}) \xrightarrow{\cdot} M_d(\mathbb{C})$ is said completely positive if $\Psi \otimes \operatorname{Id}_{M_n(\mathbb{C})}$ is positive for any $n \in \mathbb{N}$.

Definition (Quantum channels)

A quantum channel is a CP map Φ that preserves the identity: $\Phi(I) = I$. Equivalently $\operatorname{tr} \circ \Phi^* = \operatorname{tr}$.

Average evolution for repeated interactions:

$$\bar{\rho}_{n+1} := \Phi^*(\bar{\rho}_n).$$

Quantum detailed balance

Definition (Quantum detailed balance)

For any $s \in \mathbb{R}$, let $\Phi^{(s)}$ be the adjoint of Φ w.r.t. the scalar product $\langle A, B \rangle_s = \operatorname{tr}(\rho^s A^* \rho^{1-s} B)$.

Then the quantum channel Φ verifies (anti)unitary (s-QDB) if there exists an (anti)unitary operator $J:\mathbb{C}^d\to\mathbb{C}^d$ such that, there exists $c\in U(1)$ such that $\Phi(J^2)=cJ^2$ and

$$\Phi^{(s)} = J^* \Phi(J \cdot J^*) J.$$

Reminder: $\langle \cdot, \cdot \rangle_{BKM} = \int_0^1 \langle \cdot, \cdot \rangle_s ds$.

Instruments

Definition (Instruments)

A quantum instrument,

$$\mathcal{J}:=\{\Phi_a:M_d(\mathbb{C}) o M_d(\mathbb{C})\}_{a\in\mathcal{A}}$$

is a set of CP maps such that

$$\Phi := \sum_{a \in \mathcal{A}} \Phi_a$$

is a quantum channel.

Meaning:

The letter a summarizes the measurement result after one interaction and Φ_a encodes the effect of the interaction, given the measurement result is a.

After one indirect measurement,

$$\rho_1 := \frac{\Phi_a^*(\rho_0)}{\operatorname{tr} \Phi_a^*(\rho_0)} \text{ with prob. } \operatorname{tr} \Phi_a^*(\rho_0).$$

Probability measures

Definition

Let \mathcal{J} be a quantum instrument. Let $\rho \in \mathcal{D}$. Then the probability to measure the finite sequence a_1, a_2, \ldots, a_n is,

$$\mathbb{P}(a_1,\ldots,a_n)=\mathsf{tr}(\rho\Phi_{a_1}\circ\cdots\circ\Phi_{a_n}(I_d)).$$

Summary: Such $\mathbb P$ is the distribution of the data sequence obtained in a repeated quantum measurement experiment.

Probability measure properties

Lemma (Ergodic property)

If Φ is **irreducible**, then \mathbb{P} (defined by ρ) is ergodic w.r.t. the left shift.

Lemma (Upper quasi Bernoulli property) If $\rho > 0$, then $\exists C > 0$ such that, for any two finite sequences a_1, \ldots, a_n and b_1,\ldots,b_p ,

$$\mathbb{P}(a_1,\ldots,a_n,b_1,\ldots,b_p) \leq C\mathbb{P}(a_1,\ldots,a_n)\mathbb{P}(b_1,\ldots,b_p).$$

From now on, I assume Φ is irreducible and ρ is the unique invariant state of Φ^* .

Order reversal

Reversal of the movie frames.

Let θ be an involution of \mathcal{A} . For example $\theta(1)=2,\ \theta(2)=1\ldots$

A time reversal of the data sequence is then:

$$\Theta_n(a_1,\ldots,a_n):=(\theta(a_n),\ldots,\theta(a_1)).$$

The probability of the reversed sequence is:

$$\widehat{\mathbb{P}}(a_1,\ldots,a_n)=\mathbb{P}(\theta(a_n),\ldots,\theta(a_1)).$$

Canonical order reversal instrument

 $\widehat{\mathbb{P}}$ is always the unraveling of a reversed $\widehat{\Phi}$ by a reversed instrument $\widehat{\mathcal{J}}:=\{\widehat{\Phi}_a\}_a.$

An example is:

$$\widehat{\Phi}_{a}(X) = J^{*} \rho^{-\frac{1}{2}} \Phi_{\theta(a)}^{*} (\rho^{\frac{1}{2}} J X J^{*} \rho^{\frac{1}{2}}) \rho^{-\frac{1}{2}} J$$

with $J:M_d(\mathbb{C}) o M_d(\mathbb{C})$ an (anti)unitary operator such that [J,
ho]=0.

Remark that $\widehat{\Phi}$ is the dual of $J\Phi(J^*\cdot J)J^*$ w.r.t. the inner product $\langle\cdot,\cdot\rangle_{\frac{1}{2}}$.

Relative entropy convergence

The entropy production is

$$S_n(\mathbb{P}|\widehat{\mathbb{P}}) := \sum_{a_1, \dots, a_n} \mathbb{P}(a_1, \dots, a_n) \log \frac{\mathbb{P}(a_1, \dots, a_n)}{\widehat{\mathbb{P}}(a_1, \dots, a_n)} \geq 0.$$

Theorem (B., Jakšić, Pautrat, Pillet '16)
Assume Φ is irreducible. Then,

$$Ep := \lim_{n \to \infty} \frac{1}{n} S_n(\mathbb{P}|\widehat{\mathbb{P}})$$

exists and

$$Ep = 0 \Leftrightarrow \mathbb{P} = \widehat{\mathbb{P}}.$$

Entropy production vanishes iff the measurement outcome process is reversible.

What is the relation between $\mathbb{P} = \widehat{\mathbb{P}}$ and $(\frac{1}{2}\text{-QDB})$?

Stinespring's dilation

Theorem (Stinespring's dilation theorem '55)

If Φ is a quantum channel, there exists $k \in \mathbb{N}$ and an isometry $V : \mathbb{C}^d \to \mathbb{C}^d \otimes \mathbb{C}^k$ such that

$$\Phi(X) = V^*(X \otimes I_k)V \quad \forall X \in M_d(\mathbb{C}).$$

Moreover if V and W are two Stinespring dilations of the same quantum channel Φ , then there exists a unitary matrix $U \in M_k(\mathbb{C})$ such that

$$W = (I_d \otimes U) V.$$

Informationally complete instruments

Proposition

Given a dilation V of Φ , then for any instrument $\mathcal J$ that sums to Φ , there exists a POVM $\{M_a\}_{a\in\mathcal A}$ such that for any $a\in\mathcal A$,

$$\Phi_a(X) = V^*(X \otimes M_a)V \quad \forall X \in M_d(\mathbb{C}).$$

Definition (Informationally complete POVM)

The POVM $\{M_a\}_{a\in\mathcal{A}}$ is said informationally complete if $\limsup\{M_a\}_{a\in\mathcal{A}}=M_k(\mathbb{C})$.

Definition (Informationally complete instrument)

The instrument \mathcal{J} is informationally complete if there exists an informationally complete POVM $\{M_a\}_{a\in\mathcal{A}}$ that can generate the instrument \mathcal{J} .

Finitely correlated state (FCS)

If $\mathcal J$ is an informationally complete instrument, $\mathbb P\equiv\omega$ with ω a purely generated FCS on $\bigotimes_{n\in\mathbb Z}M_k(\mathbb C)$.

If
$$A = \sum_{a_1,...,a_n} c_{a_1,...,a_n} M_{a_1} \otimes \cdots \otimes M_{a_n}$$
, $\omega(A) = \mathbb{E}(X_A)$ with $X_A = \sum_{a_1,...a_n} c_{a_1,...,a_n} \mathbf{1}_{a_1,...,a_n}$.

(Anti)Unitary implementable involution

Definition ((Anti)Unitarily implementable involution) For a given POVM $\{M_a\}_{a\in\mathcal{A}}$, we say that the local involution θ is (anti)unitarily implementable if there exists a (anti)unitary operator $U \in M_k(\mathbb{C})$, such that

$$U^* M_a U = M_{\theta(a)}$$
.

$$Ep = 0 \iff (\frac{1}{2} - QDB)$$

Theorem (B., Cuneo, Jakšić, Pautrat, Pillet '19) Assume Φ is irreducible. Then, the following are equivalent.

- Φ verifies (anti)unitary ($\frac{1}{2}$ -QDB);
- There exists an informationally complete instrument $\mathcal J$ summing to Φ and an (anti)unitarily implementable local involution θ such that Ep=0.

Proof:

- ⇒ Stinespring's dilation theorem and the duality operation is an involution.
- \Leftarrow [Fannes, Nachtergaele, Werner JFA '94; Guta, Kiukas '15] uniqueness of purely generated FCS.

Thank you!