Vanishing of entropy production and quantum detailed balance

joint work with N. Cuneo, V. Jakšić, Y. Pautrat, C.-A. Pillet

Tristan Benoist Venise, Aug. 2019

IMT, Toulouse, France

Macroscopic Irreversibility: Clausius (1850), thermodynamic:

 $Ep := \Delta S \ge 0,$

Equilibrium \implies Ep = 0.

Do we have the converse ?

For classical Markov chains, Ep = 0 iff detailed balance holds.

Definition (Detailed balance)

A Markov kernel P with invariant measure μ verifies detailed balance condition if P is self adjoint with respect to the inner product

$$\langle f,g
angle _{\mu }=\int ar{f}g \ d\mu .$$

Do we have equivalence for quantum repeated measurements?

A canonical experiment

S. Haroche group experiment:

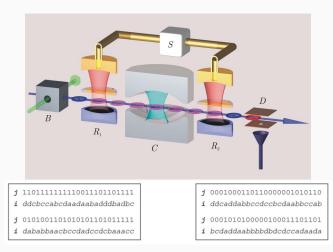


Image: LKB ENS

Definition (States)

A state ρ is a trace 1 positive semi definite matrix:

$$\rho \in \mathcal{D} := \{ \mu \in M_d(\mathbb{C}) \mid \mu \ge 0, \text{ tr } \mu = 1 \}.$$

Definition (Completely Positive (CP) maps)

A positive linear map $\Psi : M_d(\mathbb{C}) \to M_d(\mathbb{C})$ is said completely positive iff. $\Psi \otimes Id_{M_n(\mathbb{C})}$ is positive for any $n \in \mathbb{N}$.

Definition (Quantum channels)

A quantum channel is a CP map Φ that preserves the identity: $\Phi(I) = I$. Equivalently tr $\circ \Phi^* = \text{tr}$.

Average evolution for repeated interactions:

 $\bar{\rho}_{n+1} := \Phi^*(\bar{\rho}_n).$

Definition (Quantum detailed balance)

For any $s \in \mathbb{R}$, let $\Phi^{(s)}$ be the adjoint of Φ w.r.t. the scalar product $\langle A, B \rangle_s = tr(\rho^s A^* \rho^{1-s} B)$.

Then the quantum channel Φ verifies (*s*-QDB) if there exists an antiunitary involution $J : \mathbb{C}^d \to \mathbb{C}^d$ such that $\Phi^{(s)} = J\Phi(J \cdot J)J$.

Remarks (from [Fagnola, Umanità '08])

- Φ verifies (s-QDB) for $s \neq \frac{1}{2}$ if and only if it verifies (0-QDB);
- (0-QDB) \Longrightarrow ($\frac{1}{2}$ -QDB) but ($\frac{1}{2}$ -QDB) \Longrightarrow (0-QDB);
- if $\Phi^{(0)}$ is a quantum channel, then for any $s \in \mathbb{R}$, $\Phi^{(s)} = \Phi^{(0)}$;
- (0-QDB) $\implies \Phi$ (restricted to a subset of D) essentially represents the kernel of a classical Markov chain on d states;
- the canonical reversal $\widehat{\Phi}$ is the s = 1/2 dual of $J\Phi(J \cdot J)J$.

Definition (Instruments)

A quantum instrument,

$$\mathcal{J} := \{ \Phi_a : M_d(\mathbb{C}) \to M_d(\mathbb{C}) \}_{a \in \mathcal{A}}$$

is a set of CP maps such that

$$\Phi := \sum_{a \in \mathcal{A}} \Phi_a$$

is a quantum channel.

Meaning:

The letter *a* summarizes the measurement result after one interaction and Φ_a encodes the effect of the interaction, given the measurement result is *a*.

After one indirect measurement,

$$\rho_1 := \frac{\Phi_a^*(\rho_0)}{\operatorname{tr} \Phi_a^*(\rho_0)} \text{ with prob. } \operatorname{tr} \Phi_a^*(\rho_0).$$

Definition

Let \mathcal{J} be a quantum instrument. Let $\rho \in \mathcal{D}$. Then the probability to measure the finite sequence a_1, a_2, \ldots, a_n is,

$$\mathbb{P}(a_1,\ldots,a_n)=\mathrm{tr}(\rho\Phi_{a_1}\circ\cdots\circ\Phi_{a_n}(I_d)).$$

Summary: Such \mathbb{P} is the distribution of the data sequence obtained in a repeated quantum measurement experiment.

Ergodic property:

• If Φ is **irreducible** (*i.e.* Φ^* has a unique faithful stationary state $\rho = \Phi^*(\rho)$), then \mathbb{P} is ergodic w.r.t. the left shift.

Upper quasi Bernoulli property:

• $\exists C > 0$ such that, for any two finite sequences a_1, \ldots, a_n and b_1, \ldots, b_p ,

 $\mathbb{P}(a_1,\ldots,a_n,b_1,\ldots,b_p) \leq C\mathbb{P}(a_1,\ldots,a_n)\mathbb{P}(b_1,\ldots,b_p).$

Let θ be an involution of A. For example $\theta(1) = 2$, $\theta(2) = 1 \dots$ A time reversal of the data sequence is then:

$$\Theta_n(a_1,\ldots,a_n):=(\theta(a_n),\ldots,\theta(a_1)).$$

The probability of the reversed sequence is:

$$\widehat{\mathbb{P}}(a_1,\ldots,a_n)=\mathbb{P}(heta(a_n),\ldots, heta(a_1)).$$

 $\widehat{\mathbb{P}}$ is always the unraveling of a reversed $\widehat{\Phi}$ by a reversed instrument $\widehat{\mathcal{J}} := \{\widehat{\Phi}_a\}_a$. An example is:

$$\widehat{\Phi}_{a}(X) = J\rho^{-\frac{1}{2}} \Phi^{*}_{\theta(a)}(\rho^{\frac{1}{2}}JXJ\rho^{\frac{1}{2}})\rho^{-\frac{1}{2}}J$$

with $J: M_d(\mathbb{C}) \to M_d(\mathbb{C})$ an anti unitary involution such that $[J, \rho] = 0$.

Remark that $\widehat{\Phi}$ is the dual of $J\Phi(J \cdot J)J$ w.r.t. the inner product $\langle \cdot, \cdot \rangle_{\frac{1}{2}}$.

The entropy production is

$$S_n(\mathbb{P}|\widehat{\mathbb{P}}) := \sum_{a_1,\ldots,a_n} \mathbb{P}(a_1,\ldots,a_n) \log \frac{\mathbb{P}(a_1,\ldots,a_n)}{\widehat{\mathbb{P}}(a_1,\ldots,a_n)} \ge 0.$$

Theorem (B., Jakšić, Pautrat, Pillet '16) Assume Φ is irreducible. Then,

$$Ep := \lim_{n \to \infty} \frac{1}{n} S_n(\mathbb{P}|\widehat{\mathbb{P}})$$

exists and

$$Ep = 0 \Leftrightarrow \mathbb{P} = \widehat{\mathbb{P}}.$$

What is the relation between $\mathbb{P} = \widehat{\mathbb{P}}$ and $(\frac{1}{2}$ -QDB)?

Theorem (Stinespring's dilation theorem '55)

If Φ is a quantum channel, there exists $k \in \mathbb{N}$ and an isometry $V : \mathbb{C}^d \to \mathbb{C}^k \otimes \mathbb{C}^d$ such that

$$\Phi(X) = V^*(I_k \otimes X)V \quad \forall X \in M_d(\mathbb{C}).$$

Moreover if V and W are two Stinespring dilations of the same quantum channel Φ , then there exists a unitary matrix $U \in M_k(\mathbb{C})$ such that

 $W = (U \otimes I_d) V.$

Proposition

Given a dilation V of Φ , then for any instrument \mathcal{J} that sums to Φ , there exists a POVM $\{M_a\}_{a \in \mathcal{A}}$ such that for any $a \in \mathcal{A}$,

$$\Phi_a(X) = V^*(M_a \otimes X)V \quad \forall X \in M_d(\mathbb{C}).$$

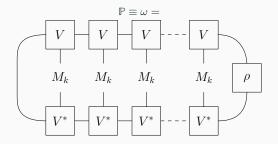
Definition (Informationally complete POVM)

The POVM $\{M_a\}_{a \in \mathcal{A}}$ is said informationally complete if $linspan\{M_a\}_{a \in \mathcal{A}} = M_k(\mathbb{C})$.

Definition (Informationally complete instrument)

The instrument \mathcal{J} is informationally complete if there exists an informationally complete POVM $\{M_a\}_{a \in \mathcal{A}}$ that can generate the instrument \mathcal{J} .

If \mathcal{J} is an informationally complete instrument, $\mathbb{P} \equiv \omega$ with ω a purely generated FCS on $\bigotimes_{n \in \mathbb{Z}} M_k(\mathbb{C})$.



If $A = \sum_{a_1,...,a_n} c_{a_1,...,a_n} M_{a_1} \otimes \cdots \otimes M_{a_n}$, $\omega(A) = \mathbb{E}(X_A)$ with $X_A = \sum_{a_1,...,a_n} c_{a_1,...,a_n} \mathbf{1}_{a_1,...,a_n}$.

$Ep = 0 \iff (\frac{1}{2}$ -QDB)

Definition (Unitarily implementable involution)

For a given POVM $\{M_a\}_{a \in \mathcal{A}}$, we say that the local involution θ is unitarily implementable if there exists a **unitary involutive matrix** $U \in M_k(\mathbb{C})$, such that

 $UM_aU = M_{\theta(a)}.$

Theorem (B., Cuneo, Jakšić, Pautrat, Pillet '19)

Assume Φ is primitive. Then, the following are equivalent.

- Φ verifies (¹/₂-QDB);
- There exists an informationally complete instrument \mathcal{J} summing to Φ and a unitarily implementable local involution θ for an informationally complete POVM generating \mathcal{J} such that Ep = 0.

Proof:

 \Rightarrow Stinespring's dilation theorem and the duality operation is an involution.

 \Leftarrow [Fannes, Nachtergaele, Werner JFA '94] uniqueness of purely generated FCS and the duality operation is an involution.