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Equilibrium vs. Out of equilibrium
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Second law

Macroscopic Irreversibility:

Clausius (1850), thermodynamic:

Ep := ∆S ≥ 0,

Equilibrium =⇒ Ep = 0.

Do we have the converse ?

For classical Markov chains, Ep = 0 iff detailed balance holds.

Definition (Detailed balance)

A Markov kernel P with invariant measure µ verifies detailed balance condition if P is

self adjoint with respect to the inner product

〈f , g〉µ =

∫
f̄ g dµ.

Do we have equivalence for quantum repeated measurements?
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A canonical experiment

S. Haroche group experiment:

Image: LKB ENS
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States and quantum channels

Definition (States)

A state ρ is a trace 1 positive semi definite matrix:

ρ ∈ D := {µ ∈ Md (C) | µ ≥ 0, tr µ = 1}.

Definition (Completely Positive (CP) maps)

A positive linear map Ψ : Md (C)→ Md (C) is said completely positive iff. Ψ⊗ IdMn(C)

is positive for any n ∈ N.

Definition (Quantum channels)

A quantum channel is a CP map Φ that preserves the identity: Φ(I ) = I . Equivalently

tr ◦Φ∗ = tr.

Average evolution for repeated interactions:

ρ̄n+1 := Φ∗(ρ̄n).
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Quantum detailed balance

Definition (Quantum detailed balance)

For any s ∈ R, let Φ(s) be the adjoint of Φ w.r.t. the scalar product

〈A,B〉s = tr(ρsA∗ρ1−sB).

Then the quantum channel Φ verifies (s-QDB) if there exists an antiunitary involution

J : Cd → Cd such that Φ(s) = JΦ(J · J)J.

Remarks (from [Fagnola, Umanità ’08])

• Φ verifies (s-QDB) for s 6= 1
2

if and only if it verifies (0-QDB);

• (0-QDB) =⇒ ( 1
2

-QDB) but
(((((((((
( 1

2
-QDB) =⇒ (0-QDB);

• if Φ(0) is a quantum channel, then for any s ∈ R, Φ(s) = Φ(0);

• (0-QDB) =⇒ Φ (restricted to a subset of D) essentially represents the kernel of

a classical Markov chain on d states;

• the canonical reversal Φ̂ is the s = 1/2 dual of JΦ(J · J)J.
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Instruments

Definition (Instruments)

A quantum instrument,

J := {Φa : Md (C)→ Md (C)}a∈A

is a set of CP maps such that

Φ :=
∑
a∈A

Φa

is a quantum channel.

Meaning:

The letter a summarizes the measurement result after one interaction and Φa encodes

the effect of the interaction, given the measurement result is a.

After one indirect measurement,

ρ1 :=
Φ∗a (ρ0)

tr Φ∗a (ρ0)
with prob. tr Φ∗a (ρ0).
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Probability measures

Definition

Let J be a quantum instrument. Let ρ ∈ D. Then the probability to measure the

finite sequence a1, a2, . . . , an is,

P(a1, . . . , an) = tr(ρΦa1 ◦ · · · ◦ Φan (Id )).

Summary: Such P is the distribution of the data sequence obtained in a repeated

quantum measurement experiment.
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Probability measure properties

Ergodic property:

• If Φ is irreducible (i.e. Φ∗ has a unique faithful stationary state ρ = Φ∗(ρ)), then

P is ergodic w.r.t. the left shift.

Upper quasi Bernoulli property:

• ∃C > 0 such that, for any two finite sequences a1, . . . , an and b1, . . . , bp ,

P(a1, . . . , an, b1, . . . , bp) ≤ CP(a1, . . . , an)P(b1, . . . , bp).
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Order reversal

Let θ be an involution of A. For example θ(1) = 2, θ(2) = 1 . . .

A time reversal of the data sequence is then:

Θn(a1, . . . , an) := (θ(an), . . . , θ(a1)).

The probability of the reversed sequence is:

P̂(a1, . . . , an) = P(θ(an), . . . , θ(a1)).
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Reformulation as an instrument HT

P̂ is always the unraveling of a reversed Φ̂ by a reversed instrument Ĵ := {Φ̂a}a.

An example is:

Φ̂a(X ) = Jρ−
1
2 Φ∗θ(a)(ρ

1
2 JXJρ

1
2 )ρ−

1
2 J

with J : Md (C)→ Md (C) an anti unitary involution such that [J, ρ] = 0.

Remark that Φ̂ is the dual of JΦ(J · J)J w.r.t. the inner product 〈·, ·〉 1
2

.
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Relative entropy convergence

The entropy production is

Sn(P|P̂) :=
∑

a1,...,an

P(a1, . . . , an) log
P(a1, . . . , an)

P̂(a1, . . . , an)
≥ 0.

Theorem (B., Jakšić, Pautrat, Pillet ’16)

Assume Φ is irreducible. Then,

Ep := lim
n→∞

1

n
Sn(P|P̂)

exists and

Ep = 0⇔ P = P̂.

What is the relation between P = P̂ and ( 1
2

-QDB)?
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Stinespring’s dilation

Theorem (Stinespring’s dilation theorem ’55)

If Φ is a quantum channel, there exists k ∈ N and an isometry V : Cd → Ck ⊗ Cd

such that

Φ(X ) = V ∗(Ik ⊗ X )V ∀X ∈ Md (C).

Moreover if V and W are two Stinespring dilations of the same quantum channel Φ,

then there exists a unitary matrix U ∈ Mk (C) such that

W = (U ⊗ Id ) V .
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Informationally complete instruments

Proposition

Given a dilation V of Φ, then for any instrument J that sums to Φ, there exists a

POVM {Ma}a∈A such that for any a ∈ A,

Φa(X ) = V ∗(Ma ⊗ X )V ∀X ∈ Md (C).

Definition (Informationally complete POVM)

The POVM {Ma}a∈A is said informationally complete if linspan{Ma}a∈A = Mk (C).

Definition (Informationally complete instrument)

The instrument J is informationally complete if there exists an informationally

complete POVM {Ma}a∈A that can generate the instrument J .
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Finitely correlated state (FCS)

If J is an informationally complete instrument, P ≡ ω with ω a purely generated FCS

on
⊗

n∈Z Mk (C).

P ≡ ω =

Mk Mk Mk Mk
ρ

V V VV

V
∗

V
∗

V
∗

V
∗

If A =
∑

a1,...,an
ca1,...,anMa1 ⊗ · · · ⊗Man , ω(A) = E(XA) with

XA =
∑

a1,...an
ca1,...,an1a1,...,an .
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Ep = 0 ⇐⇒ ( 1
2 -QDB)

Definition (Unitarily implementable involution)

For a given POVM {Ma}a∈A, we say that the local involution θ is unitarily

implementable if there exists a unitary involutive matrix U ∈ Mk (C), such that

UMaU = Mθ(a).

Theorem (B., Cuneo, Jakšić, Pautrat, Pillet ’19)

Assume Φ is primitive. Then, the following are equivalent.

• Φ verifies ( 1
2

-QDB);

• There exists an informationally complete instrument J summing to Φ and a

unitarily implementable local involution θ for an informationally complete POVM

generating J such that Ep = 0.

Proof:

⇒ Stinespring’s dilation theorem and the duality operation is an involution.

⇐ [Fannes, Nachtergaele, Werner JFA ’94] uniqueness of purely generated FCS and

the duality operation is an involution.
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