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Reversibility vs. Irreversibility

Time reversal invariance: 3© an involution such that,

(O)o—t = (O(0)) tr—tr—t-
Example: ©(x) = x,©(p) = —p.

Irreversibility:
Clausius (1850), thermodynamic:

Ep:= AS >0,

Entropy always increases = Thermodynamic time ordering.



Fluctuation relations

Developed in the nineties [Evans, Cohen, Gallavotti, Morris, Crooks .. .].
> w = (x¢)¢: a path in phase space,
» ot(w): entropy production rate random variable (E(c:) = %Ept).
If the dynamical system is time reversal invariant, the transient fluctuation relation,

dPt(O't = S) _
dPt(O't = —S)

ts

holds.
Under Chaotic Hypothesis, for any open set O C R

1 .
tl_l}rgo " log P(to: € O) = fslgfol(s),

With, s — I(s) a good rate function such that:

I(s) >0, I(s)=0<«= s=Ep and I(s)=1I(—s)—s.



Projection postulate and irreversibility

von Neumann (1932), 2 rules for quantum mechanics:
1. Projection postulate (PP): p — p' = % with proba tr[Pp] (Irreversible),
2. Unitary evolution: p; = e~Htpeitt (Reversible).

Projection Postulate Irreversibility = Quantum time ordering.

» Bohm (1951): “This [quantum] irreversibility greatly resembles that which appears
in thermodynamic processes”.

> Landau-Lifschitz (1978): 2" law macroscopic expression of PP?



Criticism: Two state—vector formalism

Aharonov, Bergmann and Lebowitz (1964): “This time asymmetry is actually related
to the manner in which statistical ensembles are constructed”

p(a then ji,jo, ..., jni b) # p(b then jn,jn—1,...,j1;a)
but,
pUirsj2s - - »dni bla) = [(bLjn) *|Galin—1)* - - | G2 i) PGl P = pUins - - - j2, i alb).

Conditioning on initial and final states, restores time reversal invariance (TRI) at the
level of the measurement statistics.
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Full Counting Statistics and Fluctuation Relations

Kurchan (2000):

Hi = ele)(el, Hr = €l )|

’

€
Work distribution:

e—Bei
PW)= 3 plathenc)= 3> [(lUe)f <
W:e;.—ei W:e;.—e
poc e BH 5 iy U Uliy — |f)
0| bt
H;*)é, W:e'f—e,- Hf*)Ef
Time Reversal Invariance = Crooks Fluctuation Relation: If,
30, s.t. ©(0(X)) =X, ©(i1)=-i1, o) =U* ©O(p;) =prf
then,
dPt(W = W) Bw

dP(W = —w) _ ©



Entropic fluctuation relation

Entropy production defined as a two time measurement of the system state:
1. Mesure —In p: value s;,
2. Evolve with U := e~ it(H+V),
3. Measure —In p: value s¢.
4. Entropy production: to := sf — s;.

If time reversal invariance is verified:
30, s.t. ©(i1) = —i1, ©O(p)=p, O(H)=H, ©(V)=V.
Then the statistic of o verifies:

dPt(G'ZS) ot

- P g LT ZS8) s
S(pelp) t/Rod o) and ZTO e

= Positive entropy production is exponentially more likely.

Issue: Two time projective measurement of a non local quantity.

= experimental propositions of measurement of the FCS using an auxiliary gbit
interacting locally: Campisi, M. et al. New J. Phys. 15 (2013); Dorner, R. et al. PRL
110 (2013); Goold, J.et al. PRE 90 (2014); Mazzola, L. et al. PRL 110 (2013);
Roncaglia, A.J. et al. PRL 113 (2014).



Entropy production of repeated measurements

Quantify: When can one choose the right movie order ? If it is possible how does the
probability of error decays ?

Why study repeated indirect measurements ?
> Experimentally relevant (Cavity QED, Interferometry . ..),
> “Every day experience”,

» Because we can have results.
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Outline

. Repeated measurement model,
. Entropy production and distinguishability between forward and backward,

. Rényi relative entropy regularity, Fluctuation relations,

AW N =

. Hypothesis testing and error exponents.
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A canonical experiment

S. Haroche group experiment:

7 1101111111110011101101111
i ddcbccabedaadaabadddbadbe

j 0101001101010101101011111
i dababbaacbccdadcedebaaace

J 0001000110110000001010110
i ddcaddabbccdccbedaabbecab

j 0001010100000100011101101
i bedaddaabbbbdbdcdccadaada

Image: LKB ENS
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Repeated indirect measurements, a two heat baths example

Th

Measure | |System | |Measure
Tc
. a2 2 2
Hilbert space: H := C5,, ® Cj . ® CZ .




Repeated indirect measurements, a two heat baths example
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Repeated indirect measurements, a two heat baths example
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Repeated indirect measurements, a two heat baths example

Th

T.

Measure

@

System
V)

Measure

€

Dipolar, RWA:

. Ulp @ [i)(il)U*

U = exp(iTHRWA)

Hrwa = wo, @ | + wl @ 0, + Aoy @ o— + h.c.

Huy = woz @ I +wl ® 07 + Aok ® ox



Repeated indirect measurements, a two heat baths example
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tr[J pd*] ® )yl

prob. tr[Uj,-pUé‘-] x (i|Bni)



Repeated indirect measurements, a two heat baths example

Th

Tc

Measure

System

Measure

€

€

Vij,i = Ui/ (i1 Bni),

AE:€J’—€,'.

p(hv_/7 I) T tr[V,T;j’,-Vh;j,ip] '
wob. (Vi Vil
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Repeated indirect measurements, a two heat baths example

Th

Tc
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P VC:j,iPVc*-ji
pleij, i) == wIVE Vo0

cisi

prob. tr[VC*;j’I.VC;j,,-p].

Vc;j,i = Uji\/ <”Bci>7

AE:€J’—€,'.



Repeated indirect measurements, a two heat baths example

Th

*
Veij,iPVey.i

. . A e i

prob. tr[VZ. V.. ip].

Measure System Measure cij,i VG
Tc
Measurement result sequence: ((bi;i1,Ji),- -, (be;it,je)) = (K1, .., ke) with
probability

Pk, ... ke) = tr[Vi, -~ VigpVjt -+ Vi ]

Remark: Two time measurement process studied by Crooks[PRA '08] and Horowitz, Parrondo[NJP
'13]



Quantum instruments

Definition (Instruments)

Let
T = {®k : Mg(C) = My(C)}u=1,....c

be a familly of completely positive (CP) maps such that the CP map

4
=",
k=1

is unital (CPU). Then J is called an instrument.
If moreover the Kraus rank of ® is 1 for any k =1,...,#, the instrument is called
perfect.

Definition (Unraveling)
Let p € M:,r’l(C) be a state on C?, then the probability measure P on
Q={1,...,£}N defined by the marginals,

Pt(kl, ey kt) = tr(pd)kl 0--:0 d>kt(ld))

is called an unraveling of the CPU map ®.
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The dynamical system picture

w3

wy

ws

wt:].,...,f.

> States of the dynamical system: {(c;/,j), (h;i,j)}ij = {1,...

> “Trajectory” space: Q = {1,...,£}N, time: t € N.

Finite time trajectories:

> Measure on the trajectories: P,
> Time shift: f o ¢*(wo,ws, ..

Qt = {1,

Qfin = Utent-

.) = f(wt, wet1, - . .) for all trajectory w € Q.

Remark: Can also be seen as a classical spin £ chain with the configurations

probabilities given by P or a finitely correlated state over a commutative algebra €.
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Dynamical system properties

Ergodic property:
» If p is the unique invariant state of ®*, then (Q, P, ¢) is ergodic.

-
1
lim — E(g f o ¢') = E(g)E(f).
Jim 7 3 Ele £ 06 = EE()
From now on, we assume p is the unique invariant state of ®*.
Upper Bernoulli property:
» 3C > 0 such that, for any finite sequence ki, ..., ks, kst1, ..., kt,

P(ki, ..., ksyKst1,---,ke) < CP(ki, ..., ks)P(kst1,- .., ke).
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Time reversal

Let 6: {1,...,¢} — {1,...,¢} be an involution (i.e. 8(0(k)) = k).
A time reversal of the measurement results is then:

e(kh EER) kt) = (e(kt)7 sy e(kl))
The time reversed probability measure over Q is:

P(ky, ..., kt) = P(0(ke), . .., 0(k1)).

P is the unraveling of ® by the instrument 7 := {$k}k with

1, 1,1, _1
Pu(X) = p 205y (p2 Xp2)p~ 2.
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Time reversal of the two baths example

Th

Measure

Tc
0(b;i,j) = (bij,i)

reversed is

System Measure
((c, +AE), (h,—AE),...,(h0))
((e,—AE),(h,+AE),...,(h,0)).
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Time reversal of the two baths example

Th

@

Tc

0(b;i,j) = (biJ, 1)

reversed is

Measure | | System Measure
J

((C7 +AE)7 (ha _AE), RN (h) 0))

((C7 7AE)7 (h7 +AE)7 R (h,O))
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Time reversal of the two baths example
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Time reversal of the two baths example

Th

Measure

Tc

0(b;i,j) = (biJ, 1)

reversed is

System Measure
((e,+AE), (h,—AE),...,(h,0))
((e,—AE),(h,+AE),...,(h,0)).
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Comparing Pand P

Assume non finite time distinguishability: P+(A) > 0 < P;(A) > 0 for all t € N.

We study the entropy production,

> In mean:

S(Pe[Pe) :="_ Pe(wr) log[Pe(wt)/Pe(wt)] > 0.

wt
» Random variable: 1
Ot = ? Iog[Pt(wt)/Pt(wt)]

Since the time reversal is an involution:

S(PelPe) = D~ Pe(wr) loglPe(we)/Pe(we)] = S(Pe|Pe).
we €Q



Two sub additive convergence results

Lemma (Fekete)
Let (at)¢>1 be a sequence of real numbers such that fora c € R and all s,t € N,

arts < ar +as +c.

Then
.1 . .artc
lim —a; = inf .
t—oo t t>1 t

Theorem (Kingman)

Let X¢ : Q — R be a sequence of random variables such that E(|X¢|) < co. Assume
3C € R such that for all t,s € N,

Xirs(w) < Xe(w) + Xs 0 ¢'(w) + C

with P probability 1. Then the limit
=i 1X
x(w) = Jim_ < +(w)
exists with probability 1 and is ¢ invariant. Moreover

Jim. %E(Xt) = E(x).
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Entropy production

Theorem (B., Jaksic, Pautrat, Pillet '16)

1o s
exists. Assume moreover that P is ergodic. Then,
o := lim o =E(c) = Ep. P — almost surely.
t—oo
Moreover,
Ep=0sP=P and Ep>0<P(c>0)=1andP(c>0)=0.
Remark

With P probability 1,
lim or = —Ep.
t—o0

20/34



Entropy production

The asymptotic entropy production random variable distinguishes between P and P.
Given an observed “trajectory” w € Q,

> Either o > 0 and the arrow goes forward (i.e. P is the underlying measure),

> Or 0 < 0 and the arrow goes backward (i.e. P is the underlying measure).
Remark

Ep = 0 ~ Detailed balance condition.

With Detailed balance condition: R
b =o.

() can be proved for a family of appropriate measurements.
(—)? from the theory of finitely correlated states [Fannes, Nachtergaele, Werner CMP
'92].
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Entropy production

Th

Measure | | System Measure

Te

1.1 1
~ —(—A —AQ).
ot t(Th Qh+Tc Q)

Since Jg := limt 00 TAQc = limt 500 —1AQy with probability 1,

T, —T.
Ep = uJQ >0 = sign(Jg) =sign(Th — Tc).
TcTh

Since Jg = AEL(P(c; +AE) — P(c; —AE)),
Ep=0& Tc =Ty

Remark: This is not true for full dipolar interaction where Ep > 0 even if T = Te.



Beyond the law of large numbers: Rényi relative entropy.

Cumulant generating function of —to:

er(a) :=log > Pe(we)t"Py(we)® = Sa(PelPe).
wtEQ

Since 3°,, f(we) =>4, (&),
er(@) = Sa(Pt|Pt) = S1_a(Pt|Pt) = S1_a(P:|P:) = er(1 — o).
Hence, the transient fluctuation relation holds:

Pe(oe =5) _ es
Pt(O't = —S) '

Theorem (B.,Jaksic, Pautrat, Pillet '16)
Va € [0,1],
.1
e(a) = tlngo ?et(oz)
exists, is continuous, convex, satisfies e(0) = e(1) =0 and
e(a) = e(1—a),

05 e(@)|azo = ~ 05 e(a)lacs = —Ep.
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Rényi relative entropy as an entropic pressure

Rényi entropy can be obtained through a variational principle.

%et(a) = % mQatx(EQt(log P:) — aEq,(0t) + S(Q¢)).

Thermodynamic equivalent: Canonical Gibbs distribution maximises the free energy.
FL ~ et(a), SL ~ S(Qt) and ﬂEL ~ OéEQt(Ut) — EQ:(IOg Pt).

Since Eis < C + E; + Es = sub additive thermodynamic formalism! = regularity of

e(a).

Let Py be the set of ¢ invariant probability measures over Q.
For all o € [0, 1] there exists Q — fo(Q) affine and upper semicontinuous such that:

e(a) = sup fa(Q)
QEPy

Let Peq(cx) be the set of probability measures for which the supremum is reached.
If Peg(cx) is a singleton, then o — e(a) is differentiable on ]0, 1[.

1[Barreira '10, Feng '09]
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Differentiability of e(«)

Assumption (C): (Weaker than lower Bernoulli) There exists 7 and C’ > 0 such that
for all s, t, wt € Q,vs € Qs, there exists £, € Q, with v < 7 such that

P(we, Eu, Us)P(we, Eu, vs) > C'Pwe)P(vs)P(we)P(vs).

Theorem (B., Jaksic, Pautrat, Pillet, '16)
If Assumption (C) holds, o — e(«) is differentiable on |0, 1[.

Assumption (D): (Quasi Bernoulli) There exists C > 0 such that for all s, t,
wt € Qr,vs € Qs,

C7IP(we)P(vs) < P(we, vs) < CP(wr)P(vs)-

Theorem (B., Jaksic, Pautrat, Pillet '16)
If Assumption (D) holds, o — e(a) exists and is differentiable on R.
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Rényi entropy and heat cumulant generating function.

Th

Tc

e(a) is the limit cumulant generating function of

Measure

System

Measure

—0t ~
t

1T - T,
T.Th

AQc.

It can be explicitly computed using spectral techniques on CP maps.
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e(«) for different Ty — T,

-0.04F

e(1/2) decreases when T — T¢ increases.

1PN G4
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Fluctuation relation

The entropy production random variable verifies a local large deviation principle.

I1(s) := sup(as —&(a)).
a€eR

From the symmetry e(a) = e(1 — @), this rate function is such that
I(—s)—1I(s)=s and [(Ep)=0.

Theorem
If Assumption (C) holds, for any s €] — Ep, Ep|,

1
lim I|m = IogP (ot —s| <€) = —I(s)
elot

'E'f& I|m = IogP (Jot +s| <€) =—I(—s) =—(I(s) +s)

If Assumption (D) holds, then both previous limit hold for any s € R.



Hypothesis testing of the arrow of time

Aim: Evaluation of the error one can make when guessing the arrow of time.
Ho The observed quantum measurements are described by (7, p).
H; The observed quantum measurements are described by (f, p)-

For each time t let T; be an event whose realisation implies we decide “Hp is true”.

Example: T, = {w: € Qt|o: > 0}.

Then,
> P:(7F) is the probability to reject Hy when it is true (Type | error).
> /P\t(Tt) is the probability to accept Hy when Hj is true (Type Il error).
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Stein's error exponents

Stein error exponent for € €]0, 1[:

se(e) = mTin{ISt(Tt)m C Q and P¢(TF) < €}

“s¢(€) is the minimal error of type Il while we control the error of type I.”

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer '12)
Assume @ is irreducible. Then, for all € €]0,1],

1
tl_l)rgo " log st(e) = —Ep.

The entropy production corresponds to the exponential decreasing rate of the error of
type Il given any control on the error of type I.



Hoeffding error exponents

These exponents are similar to the Stein one, with a tighter control on the type | error.

_ 1 ~ 1
h(s) := inf{limsup = log P¢(7¢)| limsup = log P+(7;°) < —s}
Tt  t—oo t t—oo t

1 - 1
h(s) = inf{liminf = log P l Zlog P+ (TF) < —
h(s) = inf{lim inf — log P¢(7:)[lim sup ~log P«(7y) < —s}

. D SN . 1
h(s) := |%f{tlngo : log P+(Tz)| Ilt':]lsolip : log P+(7) < —s}.

For s > 0, set

W(s)=— sup Le(a),
aclo] l-«

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer '12)
Suppose ® is irreducible and Assumption (C) holds. Then for s > 0,

h(s) = h(s) = h(s) = ¥(s).
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Chernoff exponents

Assume a priori equiprobability for both hypothesis Hy and H;. Take the test,
It = {wt € Qt|0’t > 0}.

Then, the total probability of error is:
1 c 1~ 1 ~
ct = SPu(Tg) + SP(T,) = (1 = [IPe = Pell7v).
2 2 2
Chernoff exponents are:

1 o1
c:=limsup —logc: and c:=liminf —logc;.
t—oo t t—oo t

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer '12)

»c<e(3) and c>e(3)—30%e(3).

Particularly Ep > 0 = ¢ < 0.
» If Assumption (C) holds, € = ¢ = e(%).



e(«) and error exponents




Open questions

> General algebraic characterisation of Assumption (C),

» & irreducible and P; ~ ﬁt Vt such that (C) does not hold,

> Irregularities outside ]0, 1[ and higher order Stein’s exponents (Example where
2B s (M (0,1) — IN(0, 1)),

» Other conditions on ® such that it verifies detailed balance,

» Continuous time version,

> Entangled probes,

> Time reversal of the underlying Markov chain on the system.
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