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Reversibility and irreversibility

Edited from Wake Forest University Physics
Department video.

Edited from anonymous creator animated
graphic.
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Reversibility vs. Irreversibility

Time reversal invariance: ∃Θ an involution such that,

〈O〉0→t = 〈Θ(O)〉tf→tf−t .

Example: Θ(x) = x ,Θ(p) = −p.

Irreversibility:
Clausius (1850), thermodynamic:

Ep := ∆S ≥ 0,

Entropy always increases ⇒ Thermodynamic time ordering.
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Fluctuation relations

Developed in the nineties [Evans, Cohen, Gallavotti, Morris, Crooks . . . ].

I ω = (xt)t : a path in phase space,

I σt(ω): entropy production rate random variable (E(σt) = 1
t
Ept).

If the dynamical system is time reversal invariant, the transient fluctuation relation,

dPt(σt = s)

dPt(σt = −s)
= et s

holds.
Under Chaotic Hypothesis, for any open set O ⊂ R

lim
t→∞

1

t
log P(tσt ∈ O) = − inf

s∈O
I (s),

With, s 7→ I (s) a good rate function such that:

I (s) ≥ 0, I (s) = 0 ⇐⇒ s = Ep and I (s) = I (−s)− s.
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Projection postulate and irreversibility

von Neumann (1932), 2 rules for quantum mechanics:

1. Projection postulate (PP): ρ→ ρ′ = PρP
tr[Pρ′] with proba tr[Pρ] (Irreversible),

2. Unitary evolution: ρt = e−iHtρe iHt (Reversible).

Projection Postulate Irreversibility ⇒ Quantum time ordering.

I Bohm (1951):“This [quantum] irreversibility greatly resembles that which appears
in thermodynamic processes”.

I Landau-Lifschitz (1978): 2nd law macroscopic expression of PP?
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Criticism: Two state–vector formalism

Aharonov, Bergmann and Lebowitz (1964): “This time asymmetry is actually related
to the manner in which statistical ensembles are constructed”

p(a then j1, j2, . . . , jn; b) 6= p(b then jn, jn−1, . . . , j1; a)

but,

p(j1, j2, . . . , jn; b|a) := |〈b|jn〉|2|〈jn|jn−1〉|2 · · · |〈j2|j1〉|2|〈j1|a〉|2 = p(jn, . . . , j2, j1; a|b).

Conditioning on initial and final states, restores time reversal invariance (TRI) at the
level of the measurement statistics.

6 / 34



Full Counting Statistics and Fluctuation Relations

Kurchan (2000):

Hi =
∑
ε

ε|ε〉〈ε|, Hf =
∑
ε′
ε′|ε′〉〈ε′|

Work distribution:

Pt(W ) =
∑

W=ε′
f
−εi

p(εi then ε′f ) =
∑

W=ε′
f
−ε′i

|〈ε′f |Uεi 〉|
2 e−βεi

Z
.

0 t|

ρ ∝ e−βHi → |i〉〈i |

Hi → εi

|
Hf → εf

U|i〉 → |f 〉

W = ε′f − εi

U

Time Reversal Invariance ⇒ Crooks Fluctuation Relation: If,

∃Θ, s.t. Θ(Θ(X )) = X , Θ(i1) = −i1, Θ(U) = U∗, Θ(ρi ) = ρf

then,
dPt(W = w)

dPt(W = −w)
= eβw .
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Entropic fluctuation relation

Entropy production defined as a two time measurement of the system state:

1. Mesure − ln ρ: value si ,

2. Evolve with U := e−it(H+V ),

3. Measure − ln ρ: value sf .

4. Entropy production: tσ := sf − si .

If time reversal invariance is verified:

∃Θ, s.t. Θ(i1) = −i1, Θ(ρ) = ρ, Θ(H) = H, Θ(V ) = V .

Then the statistic of σ verifies:

S(ρt |ρ) = t

∫
R
σdPt(σ) and

dPt(σ = s)

dPt(σ = −s)
= et s .

⇒ Positive entropy production is exponentially more likely.

Issue: Two time projective measurement of a non local quantity.
⇒ experimental propositions of measurement of the FCS using an auxiliary qbit
interacting locally: Campisi, M. et al. New J. Phys. 15 (2013); Dorner, R. et al. PRL
110 (2013); Goold, J.et al. PRE 90 (2014); Mazzola, L. et al. PRL 110 (2013);
Roncaglia, A.J. et al. PRL 113 (2014).
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Entropy production of repeated measurements

Quantify: When can one choose the right movie order ? If it is possible how does the
probability of error decays ?

Why study repeated indirect measurements ?

I Experimentally relevant (Cavity QED, Interferometry . . . ),

I “Every day experience”,

I Because we can have results.
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Outline

1. Repeated measurement model,

2. Entropy production and distinguishability between forward and backward,

3. Rényi relative entropy regularity, Fluctuation relations,

4. Hypothesis testing and error exponents.
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A canonical experiment

S. Haroche group experiment:

Image: LKB ENS
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

ρ

Hilbert space: H := C2
sys. ⊗ C2

hot ⊗ C2
cold .
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

ρ⊗ βh, prob. 1
2
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi

ρ⊗ |i〉〈i |, prob. 〈i |βhi〉
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi

U

U(ρ⊗ |i〉〈i |)U∗

Dipolar, RWA:

U = exp(iτHRWA)

HRWA = ωσz ⊗ I + ωI ⊗ σz + λσ+ ⊗ σ− + h.c.

Hfull = ωσz ⊗ I + ωI ⊗ σz + λσx ⊗ σx
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi εj

UjiρU
∗
ij

tr[UjiρU
∗
ij ]
⊗ |j〉〈j |,

prob. tr[UjiρU
∗
ij ]× 〈i |βhi〉
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

εi εj

ρ(h; j , i) :=
Vh;j,iρV

∗
h;j,i

tr[V∗
h;j,i

Vh;j,iρ]
,

prob. tr[V ∗h;j,iVh;j,iρ].

Vh;j,i = Uji

√
〈i |βhi〉,

∆E = εj − εi .
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Repeated indirect measurements, a two heat baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

ρ(c; j , i) :=
Vc;j,iρV

∗
c;j,i

tr[V∗c;j,iVc;j,iρ]
,

prob. tr[V ∗c;j,iVc;j,iρ].

Measurement result sequence: ((b1; i1, ji ), . . . , (bt ; it , jt)) = (k1, . . . , kt) with
probability

P(k1, . . . , kt) = tr[Vkt · · ·Vk1
ρV ∗k1

· · ·Vkt ].

Remark: Two time measurement process studied by Crooks[PRA ’08] and Horowitz, Parrondo[NJP
’13]
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Quantum instruments

Definition (Instruments)
Let

J := {Φk : Md (C)→ Md (C)}k=1,...,`

be a familly of completely positive (CP) maps such that the CP map

Φ :=
∑̀
k=1

Φk

is unital (CPU). Then J is called an instrument.
If moreover the Kraus rank of Φk is 1 for any k = 1, . . . , `, the instrument is called
perfect.

Definition (Unraveling)
Let ρ ∈ M+,1

d (C) be a state on Cd , then the probability measure P on

Ω = {1, . . . , `}N defined by the marginals,

Pt(k1, . . . , kt) = tr(ρΦk1
◦ · · · ◦ Φkt (Id ))

is called an unraveling of the CPU map Φ.
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The dynamical system picture

ω0 ω1 ω2 ω3 ω4 ω5 ω6 · · · ωt · · ·

ωt = 1, . . . , `.

I States of the dynamical system: {(c; i , j), (h; i , j)}i,j ≡ {1, . . . , `}
I “Trajectory” space: Ω = {1, . . . , `}N, time: t ∈ N.

Finite time trajectories:

Ωt := {1, . . . , `}t , Ωfin = ∪t∈NΩt .

I Measure on the trajectories: P,

I Time shift: f ◦ φt(ω0, ω1, . . .) = f (ωt , ωt+1, . . .) for all trajectory ω ∈ Ω.

Remark: Can also be seen as a classical spin ` chain with the configurations
probabilities given by P or a finitely correlated state over a commutative algebra C.
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Dynamical system properties

Ergodic property:

I If ρ is the unique invariant state of Φ∗, then (Ω,P, φ) is ergodic.

lim
T→∞

1

T

T∑
t=1

E(g f ◦ φt) = E(g)E(f ).

From now on, we assume ρ is the unique invariant state of Φ∗.

Upper Bernoulli property:

I ∃C > 0 such that, for any finite sequence k1, . . . , ks , ks+1, . . . , kt ,

P(k1, . . . , ks , ks+1, . . . , kt) ≤ CP(k1, . . . , ks)P(ks+1, . . . , kt).
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Time reversal

Let θ : {1, . . . , `} → {1, . . . , `} be an involution (i.e. θ(θ(k)) = k).
A time reversal of the measurement results is then:

Θ(k1, . . . , kt) := (θ(kt), . . . , θ(k1)).

The time reversed probability measure over Ω is:

P̂(k1, . . . , kt) = P(θ(kt), . . . , θ(k1)).

P̂ is the unraveling of Φ̂ by the instrument Ĵ := {Φ̂k}k with

Φ̂k (X ) = ρ−
1
2 Φ∗θ(k)(ρ

1
2 Xρ

1
2 )ρ−

1
2 .
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Time reversal of the two baths example

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

θ(b; i , j) = (b; j , i)
((c,+∆E), (h,−∆E), . . . , (h, 0))

reversed is
((c,−∆E), (h,+∆E), . . . , (h, 0)).
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Comparing P̂ and P

Assume non finite time distinguishability: Pt(A) > 0⇔ P̂t(A) > 0 for all t ∈ N.

We study the entropy production,

I In mean:
S(Pt |P̂t) :=

∑
ωt

Pt(ωt) log[Pt(ωt)/P̂t(ωt)] ≥ 0.

I Random variable:

σt =
1

t
log[Pt(ωt)/P̂t(ωt)].

Since the time reversal is an involution:

S(Pt |P̂t) =
∑
ωt∈Ωt

Pt(ωt) log[Pt(ωt)/P̂t(ωt)] = S(P̂t |Pt).
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Two sub additive convergence results

Lemma (Fekete)
Let (at)t≥1 be a sequence of real numbers such that for a c ∈ R and all s, t ∈ N,

at+s ≤ at + as + c.

Then

lim
t→∞

1

t
at = inf

t≥1

at + c

t
.

Theorem (Kingman)
Let Xt : Ω→ R be a sequence of random variables such that E(|Xt |) <∞. Assume
∃C ∈ R such that for all t, s ∈ N,

Xt+s(ω) ≤ Xt(ω) + Xs ◦ φt(ω) + C

with P probability 1. Then the limit

x(ω) := lim
t→∞

1

t
Xt(ω)

exists with probability 1 and is φ invariant. Moreover

lim
t→∞

1

t
E(Xt) = E(x).
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Entropy production

Theorem (B., Jaksic, Pautrat, Pillet ’16)

Ep := lim
t→∞

1

t
S(Pt |P̂t)

exists. Assume moreover that P is ergodic. Then,

σ := lim
t→∞

σt = E(σ) = Ep. P− almost surely.

Moreover,

Ep = 0⇔ P = P̂ and Ep > 0⇔ P(σ > 0) = 1 and P̂(σ > 0) = 0.

Remark
With P̂ probability 1,

lim
t→∞

σt = −Ep.
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Entropy production

The asymptotic entropy production random variable distinguishes between P and P̂.
Given an observed “trajectory” ω ∈ Ω,

I Either σ ≥ 0 and the arrow goes forward (i.e. P is the underlying measure),

I Or σ ≤ 0 and the arrow goes backward (i.e. P̂ is the underlying measure).

Remark

Ep = 0 ∼ Detailed balance condition.

With Detailed balance condition:
Φ ≡ Φ̂.

(←) can be proved for a family of appropriate measurements.
(→)? from the theory of finitely correlated states [Fannes, Nachtergaele, Werner CMP
’92].
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Entropy production

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

σt '
1

t
(

1

Th
∆Qh +

1

Tc
∆Qc ).

Since JQ := limt→∞
1
t

∆Qc = limt→∞− 1
t

∆Qh with probability 1,

Ep =
Th − Tc

TcTh
JQ > 0 ⇒ sign(JQ) = sign(Th − Tc ).

Since JQ = ∆E 1
2

(P(c; +∆E)− P(c;−∆E)),

Ep = 0⇔ Tc = Th.

Remark: This is not true for full dipolar interaction where Ep > 0 even if Th = Tc .
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Beyond the law of large numbers: Rényi relative entropy.

Cumulant generating function of −tσt :

et(α) := log
∑
ωt∈Ωt

Pt(ωt)
(1−α)P̂t(ωt)

α = Sα(Pt |P̂t).

Since
∑
ωt

f (ωt) =
∑
ω̂t

f (ω̂t),

et(α) = Sα(Pt |P̂t) = S1−α(P̂t |Pt) = S1−α(Pt |P̂t) = et(1− α).

Hence, the transient fluctuation relation holds:

Pt(σt = s)

Pt(σt = −s)
= et s .

Theorem (B.,Jaksic, Pautrat, Pillet ’16)
∀α ∈ [0, 1],

e(α) := lim
t→∞

1

t
et(α)

exists, is continuous, convex, satisfies e(0) = e(1) = 0 and

e(α) = e(1− α),

∂+
αe(α)|α=0 = −∂−α e(α)|α=1 = −Ep.
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Rényi relative entropy as an entropic pressure

Rényi entropy can be obtained through a variational principle.

1

t
et(α) =

1

t
max

Qt

(EQt (log Pt)− αEQt (σt) + S(Qt)).

Thermodynamic equivalent: Canonical Gibbs distribution maximises the free energy.

FL ∼ et(α), SL ∼ S(Qt) and βEL ∼ αEQt (σt)− EQt (log Pt).

Since Et+s ≤ C + Et + Es ⇒ sub additive thermodynamic formalism1 ⇒ regularity of
e(α).

Let Pφ be the set of φ invariant probability measures over Ω.
For all α ∈ [0, 1] there exists Q 7→ fα(Q) affine and upper semicontinuous such that:

e(α) = sup
Q∈Pφ

fα(Q)

Let Peq(α) be the set of probability measures for which the supremum is reached.
If Peq(α) is a singleton, then α 7→ e(α) is differentiable on ]0, 1[.

1[Barreira ’10, Feng ’09]
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Differentiability of e(α)

Assumption (C): (Weaker than lower Bernoulli) There exists τ and C ′ > 0 such that
for all s, t, ωt ∈ Ωt , νs ∈ Ωs , there exists ξu ∈ Ωu with u ≤ τ such that

P(ωt , ξu , νs)P̂(ωt , ξu , νs) ≥ C ′P(ωt)P(νs)P̂(ωt)P̂(νs).

Theorem (B., Jaksic, Pautrat, Pillet, ’16)
If Assumption (C) holds, α 7→ e(α) is differentiable on ]0, 1[.

Assumption (D): (Quasi Bernoulli) There exists C > 0 such that for all s, t,
ωt ∈ Ωt , νs ∈ Ωs ,

C−1P(ωt)P(νs) ≤ P(ωt , νs) ≤ CP(ωt)P(νs).

Theorem (B., Jaksic, Pautrat, Pillet ’16)
If Assumption (D) holds, α 7→ e(α) exists and is differentiable on R.
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Rényi entropy and heat cumulant generating function.

SystemMeasure Measure

Bath

Th

Bath

Tc

Bath

Bath

e(α) is the limit cumulant generating function of

−σt '
1

t

Tc − Th

TcTh
∆Qc .

It can be explicitly computed using spectral techniques on CP maps.
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e(α) for different Th − Tc

e(1/2) decreases when Th − Tc increases.

27 / 34



Fluctuation relation

The entropy production random variable verifies a local large deviation principle.

I (s) := sup
α∈R

(αs − e(α)).

From the symmetry e(α) = e(1− α), this rate function is such that

I (−s)− I (s) = s and I (Ep) = 0.

Theorem
If Assumption (C) holds, for any s ∈]− Ep,Ep[,

lim
ε↓0

lim
t→∞

1

t
log Pt(|σt − s| < ε) = −I (s)

lim
ε↓0

lim
t→∞

1

t
log Pt(|σt + s| < ε) = −I (−s) = −(I (s) + s)

If Assumption (D) holds, then both previous limit hold for any s ∈ R.
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Hypothesis testing of the arrow of time

Aim: Evaluation of the error one can make when guessing the arrow of time.

H0 The observed quantum measurements are described by (J , ρ).

H1 The observed quantum measurements are described by (Ĵ , ρ).

For each time t let Tt be an event whose realisation implies we decide “H0 is true”.

Example: T t = {ωt ∈ Ωt |σt > 0}.

Then,

I Pt(T c
t ) is the probability to reject H0 when it is true (Type I error).

I P̂t(Tt) is the probability to accept H0 when H1 is true (Type II error).
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Stein’s error exponents

Stein error exponent for ε ∈]0, 1[:

st(ε) := min
Tt
{P̂t(Tt)|Tt ⊂ Ωt and Pt(T c

t ) ≤ ε}.

“st(ε) is the minimal error of type II while we control the error of type I.”

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer ’12)
Assume Φ is irreducible. Then, for all ε ∈]0, 1[,

lim
t→∞

1

t
log st(ε) = −Ep.

The entropy production corresponds to the exponential decreasing rate of the error of
type II given any control on the error of type I.
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Hoeffding error exponents

These exponents are similar to the Stein one, with a tighter control on the type I error.

h(s) := inf
Tt
{lim sup

t→∞

1

t
log P̂t(Tt)| lim sup

t→∞

1

t
log Pt(T c

t ) < −s}

h(s) := inf
Tt
{lim inf

t→∞

1

t
log P̂t(Tt)| lim sup

t→∞

1

t
log Pt(T c

t ) < −s}

h(s) := inf
Tt
{ lim
t→∞

1

t
log P̂t(Tt)| lim sup

t→∞

1

t
log Pt(T c

t ) < −s}.

For s ≥ 0, set

Ψ(s) = − sup
α∈[0,1[

−sα− e(α)

1− α
.

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer ’12)
Suppose Φ is irreducible and Assumption (C) holds. Then for s ≥ 0,

h(s) = h(s) = h(s) = Ψ(s).
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Chernoff exponents

Assume a priori equiprobability for both hypothesis H0 and H1. Take the test,

T t = {ωt ∈ Ωt |σt > 0}.

Then, the total probability of error is:

ct :=
1

2
Pt(T c

t ) +
1

2
P̂t(T t) =

1

2
(1− ‖Pt − P̂t‖TV ).

Chernoff exponents are:

c := lim sup
t→∞

1

t
log ct and c := lim inf

t→∞

1

t
log ct .

Theorem (adapted from Jaksic, Ogata, Pillet, Seiringer ’12)

I c ≤ e( 1
2

) and c ≥ e( 1
2

)− 1
2
∂+e( 1

2
).

Particularly Ep > 0⇒ c < 0.

I If Assumption (C) holds, c = c = e( 1
2

).

32 / 34



e(α) and error exponents
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Open questions

I General algebraic characterisation of Assumption (C),

I Φ irreducible and Pt ∼ P̂t ∀t such that (C) does not hold,

I Irregularities outside ]0, 1[ and higher order Stein’s exponents (Example where
σt−Ep√

t
→ γ(N (0, 1)− |N (0, 1)|)),

I Other conditions on Φ such that it verifies detailed balance,

I Continuous time version,

I Entangled probes,

I Time reversal of the underlying Markov chain on the system.
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